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Optimal foraging [4,6] theory o�ers one approach to modeling the foraging behaviorof anoles. Optimal foraging theory begins with the choice of an optimization criterion,which characterizes what it is that a lizard's foraging behavior optimizes. Roughgar-den [11] suggests that a lizard may minimize the average time used to capture a prey,which is reasonable in circumstances of high predation. Roughgarden notes that mini-mizing the average time to capture a prey leads to a tradeo� for the lizard:...if a lizard chases a very distant item, it is away from its perch and cannotsee (or react) to prey that may appear while it is gone. Alternatively, a lizardmay ignore a very distant item, and yet nothing may actually appear duringthe time it would have chased down that item. So, where should the lizarddraw the line? Clearly it should not chase extremely distant prey, for it wouldbe away from its perch all day, and it should chase extremely close prey.Roughgarden computes the optimal foraging behavior of a lizard in a simple model inwhich the lizard pursues all prey that are within a foraging threshold. This analysispredicts an optimal foraging threshold, X� ; if the lizard only pursues prey that landwithin distance X� of its perch, then the average time that the lizard uses to captureits prey is minimized.According to this analysis, X� is the foraging threshold that the lizard should use.A natural question is how a lizard determines this foraging threshold [11, 3, 13]. Rough-garden argues that it is unlikely that a particular foraging threshold (i.e., a particulardistance) is hard-wired into the brain of the lizard, because the rate a at which preyappear and the speed v of the lizard, which both a�ect X� , depend upon where thelizard lives. Any particular foraging threshold might be close to optimal if the lizardlives in some places, and very far from optimal if it lives in other places. On the otherhand, it is unlikely lizards have the cognitive ability to compute X� from a and v sincethis involves calculating cube roots [11].Roughgarden [11] argues that a more realistic model of foraging is that a lizardlearns an appropriate foraging threshold based on its past experiences pursuing prey.He proposes a learning algorithm that continually re�nes the lizard's current foragingthreshold. This algorithm assumes that the lizard can store two quantities: the timespent so far, and the total number of prey that have been captured.y Sha�r andy Sha�r and Roughgarden [11, 13] actually divide the total time into two parts: thetotal time spent pursuing and the total time spent waiting for prey. To execute theirlearning algorithm, however, the lizard really only needs to keep track of the total time.2



Roughgarden [13] note that experimental evidence suggests that many animals canconceptualize this type of information.Experimental results with this learning algorithm are reported by Sha�r and Rough-garden [11, 13]. These results con�rm that the optimal foraging threshold is found veryquickly by the learning algorithm. Menczer, Hart and Littman [8] prove that if the learn-ing algorithm converges, then it converges to X� . While this provides con�rmation thatthe learning algorithm is reasonable, it does not constitute a proof of convergence.Our analysis of Roughgarden's learning algorithm shows that the lizard's thresholddoes indeed converge to X� with probability one. Our proof uses a potential functionargument to show that the probability that the foraging threshold remains far from X�goes to zero. The fact that the learning algorithm converges provides analytic con�r-mation that the problem of learning optimal foraging thresholds can be solved usingbiologically plausible quantities. Thus, this work serves to strengthen the conclusionsconcerning the learning algorithm of Roughgarden [11].2. Formulation of the ModelIn Roughgarden's simulations, prey appear on the ground according to a Poissonpoint process with intensity a .� In other words, if the ground is divided up into �nitepatches, and time is divided up into intervals, then the number of prey landing on a givenpatch of ground during a given time interval is a Poisson random variable whose mean isthe product of a , the area of the patch of ground, and the duration of the time interval;furthermore, these various Poisson random variables are mutually independent. Recallthat a Poisson random variable with mean � takes on the value k with probabilitye���k=k! . One basic fact about this model is that with probability 1 no two prey arriveat exactly the same instant.Following Roughgarden, we assume that the lizard surveys an area in front of itshaped like a wedge from a disk, with angle � (Roughgarden used � = � , makingthe wedge a semicircle). Thus when the threshold radius is X , prey appear withinthe surveyed area according to a temporal Poisson process with rate �X2 , where � =�a=2. (Since X is a random function of time, the rate �X2 at which prey appear� Technically, Roughgarden's actual simulations didn't use continuous time andspace, but rather discretized time into units of one second, and discretized space intounits of one square meter. But it is clear that this discretization was an artifact of thesimulation code rather than an intended feature of the model.3



will also be a random function of time.) It is easily seen that when a prey does arrivewithin the surveyed region, its location is uniformly distributed within the region. InRoughgarden's model, the prey do not move while being chased, so the lizard alwayscatches any prey that it pursues. Again following Roughgarden, we assume that if aprey arrives while the lizard is busy pursuing another prey, the new prey escapes insteadof waiting to be caught, and that if a prey arrives outside the lizard's threshold, thelizard does not pursue it, even if it later increases its threshold. Let v be the velocityof the lizard. At time t , let nt be the number of prey the lizard has captured. Forconvenience we will assume that nt increases when the lizard returns to its perch aftercatching a prey (this assumption will not a�ect the lizard's behavior). The processstarts with some initial threshold X0 with n0 = 1. (When the process is started, the�rst prey has just been caught.)If a lizard decides to pursue a prey that appears at distance d from its perch,then the time taken to chase the prey, catch it, and return to the perch will be 2d=v .Roughgarden's analysis shows that the foraging threshold predicted by optimal foragingtheory is X� = � 3v2��1=3:The learning algorithm proposed by Roughgarden speci�es that the lizard will pursueif t+ 2d=vnt + 1 < tnt :This expression can be rewritten, to show that the lizard pursues ifd < vt2nt :Consequently, the learning rule speci�es that Xt , the lizard's current guess at theoptimal foraging threshold, is vt=(2nt). Note that Xt increases with time, but decreasesevery time the lizard returns to its perch after capturing a prey. Let Ti denote the timewhen the lizard starts looking for the ith prey. If the time that the lizard spends waitingfor and pursuing the ith prey is long then XTi+1 will be greater than XTi (so the lizardis unlikely to spend as long waiting for the (i+ 1)st prey, though it may spend longerpursuing it). However, if the time that the lizard spends waiting for and pursuing theith prey is short then XTi+1 will be smaller than XTi (so the lizard is likely to waitlonger for the (i + 1)st prey, though it may spend less time pursuing it). Thus, it isplausible, but not immediately clear, that the threshold values Xt converge over time.4



We can describe the distribution of the random variable Xt as follows. Let ti denotethe time at which the ith prey is seen within the lizard's foraging threshold. LetWi denote the time spent waiting to see the ith prey, di denote the distance from theperch to the ith prey, and Pi denote the time spent pursuing the ith prey. We candescribe the density functions of di , Pi , and Wi (implicitly conditional upon Xti ) asfollows. Pr(di � y) = Pr(r � (y=Xti)2) = Pr(Xtipr � y);where r is a random variable chosen uniformly from the range [0; 1). The �rst equalityfollows from the observation that the ratio between the area within radius y and thearea within radius Xti is (y=Xti)2 . Pi = 2di=v , soPr(Pi � y) = Pr�2Xtiprv � y� :We now compute Pr(Wi > y). Recall that Ti is the time when the lizard startslooking for the ith prey (i.e., Ti = ti�1 + Pi�1 ). Let the random variable Cy bethe number of prey that appear within a radius of XTi + vs=2(i � 1) of the perchat time Ti + s , as s goes from 0 to y . (This radius is the threshold radius at timeTi + s provided no prey appear during between times Ti and Ti + s .) Note thatPr(Wi > y) = Pr(Cy = 0). But Cy is a Poisson random variable, whose parameter isa times the integral of the surveyed area over time. Thus,Pr(Wi > y) = exp �� Z y0 �(XTi + vs=2(i� 1))2ds� :Using these de�nitions, we havePr(nt � i) = Pr0@ iXj=2(Wj + Pj) � t1A ;so Pr(Xt � y) = Pr0@dvt=(2y)eXj=2 (Wj + Pj) � t1A :Let T (�) denote the last time at which the lizard has been waiting for � seconds.(In other words, in addition to a clock measuring real time, there is another clock that5



only measures the time � that the lizard spends sitting at its perch. When the waitingtime clock reads � , the real time clock reads T (�). When � takes on certain specialvalues, of the form Pni=2Wi , the real time clock takes on many values due to thepositive time required to catch the prey | we break ties by taking the largest suchreal time, i.e. the time at which the lizard returns to its perch.) Let m� = nT (�) andY� = XT (�) . Let �i be the total amount of time spent waiting before the ith prey isseen within the foraging threshold. The probability that a prey arrives exactly whenthe lizard returns to the perch after pursuing the ith prey is 0, so with probability 1,�i < �i+1 . In this case, T (�i) is the time at which the lizard returns to its perch aftercatching the ith prey, so m�i = i . Let X� = (3v=(2�))1=3 be the optimal threshold.3. OverviewOur proof of convergence uses a potential function � given by�� = (Y� �X�)4m� 5=4:We argue that the expected value of this potential does not get too big, which impliesthat the threshold cannot deviate much from X� for too long. We de�ne the potentialfunction in terms of Y� and m� rather than Xt and nt because (Y� ;m� ) is a Markovprocess whereas (Xt; nt) is not, and the Markov property simpli�es the analysis.If at some point the foraging threshold is far from optimal, then it will tend tomove towards X� , causing the expected potential to decrease. If at some point thethreshold is exactly X� , then a short time later it will surely have changed, causingthe potential to increase. But the (Y� �X�)4 term is 
at enough when the thresholdis near X� , that this increase in potential will be small. It will turn out that over timethe expected increase in potential grows more slowly than the m� 5=4 term, implyingthat the deviations from X� are likely to remain small.We will argue that regardless of the current threshold radius at a given time, theexpected increase in potential in a short interval cannot be too large. Thus, we geta bound on E[��i] . After many prey are found, if Y�i deviated from X� by morethan "i (with "i slowly approaching zero), the potential would be large, so this eventcannot be too likely. The potential would need to be large enough to make these eventssu�ciently unlikely to ensure that they occur for only �nitely many i . This constrainsthe exponent of the m� term in the potential to be larger than 1. On the other hand,6



if the exponent of the m� term were larger than 4=3, then the expected increase inpotential would be too large. Hence, we used 5=4.Theorem 1 shows that (with probability 1) limi!1 Y�i exists and is X� , from whichit follows that lim�!1 Y� exists, implying that Xt converges to X� . Our argumentuses the expected number of �i 's for which Y�i deviates far from X� , since the expectednumber of � 's for which Y� deviates far from X� is in�nite. The proof of Theorem 1uses Lemma 5, which shows that the expected value of the potential function at �i isbounded by a constant that does not depend on � .The proof of Lemma 5 uses Lemmas 3 and 4. Lemma 3 bounds the expecteddi�erence between �� at two times in an interval given the state of the lizard at the�rst time. Lemma 4 de�nes a potential 	n� that equals �� in the interval [�n; �n+1)and equals ��n and ��n+1 respectively before and after the interval. Lemma 4 showsthat the expected di�erence between 	n� at two times in an interval is bounded bythe expected di�erence between �� given that n prey have been captured, times theprobability that n prey have been captured. Together, Lemmas 3 and 4 are used to showthat the expected di�erence between ��n+1 and ��n is less than a slowly decreasingfunction times the expected waiting time after the nth prey is seen and before the(n+ 1)st prey is seen within the foraging threshold, from which the result follows.Lemmas 1 and 2 provide technical details for the proofs of Lemmas 3 and 4.Lemma 3 follows from the de�nition of �� . Lemma 4 follows from a case analysisof the number of prey that have been pursued before and during the interval that isbeing considered.4. Technical ResultsWe will use the following technical lemma.Lemma 1: If P is a Poisson random variable with parameter � , thenPr(P � k) � �k=k!:Proof: Pr(P � k) = e�� 1Xi=k �ii! = e�� �kk! 1Xi=0 �ik!(i+ k)! � e�� �kk! 1Xi=0 �ii! = �kk! :7



Lemma 2: For any �xed �nite time interval, there is an upper bound Y such that forall � in the interval, Y� � Y . Furthermore, if �b and �e are drawn from the interval,and �� denotes j�e � �bj , then the probability that at least k prey arrive within thelizard's foraging threshold between time �b and �e is at most O((��)k), where theconstant depends only upon the interval.+Proof: The number of prey that appear per unit area per second is a Poisson randomvariable with parameter a . Thus, the number of prey that appear within the lizard'sforaging threshold is dominated by a Poisson random variable with parameter �Y 2�� .The lemma follows from Lemma 1.Lemma 3: There is a function g(n) with g(n) = O(n�7=4) such that the followingis true for any �xed �nite time interval: If �b and �e are drawn from the interval with�b � �e and m�b = n , thenE[��e j state at time �b]� ��bis at most (�e � �b)g(n) + O((�e � �b)2);where the constants in the O((�e � �b)2) term depend upon n and the interval (inparticular upon its maximum foraging radius from Lemma 2) but not upon �b or �e .Proof: We start by making a preliminary observation. Suppose that after waiting� seconds, the lizard sees a prey at time T 0 within its foraging threshold Y 0 . By theprobability density function of dm� , the distance of the prey from the perch is therandom variable Y 0pr , where r is uniformly distributed between 0 and 1. The lizardpursues the prey and returns to its perch. The pursuit time for this prey is 2Y 0pr=v .The new foraging threshold after the prey is caught isY� = v(T 0 + 2Y 0pr=v)2m� = v(2(m� � 1)Y 0=v) + 2Y 0pr2m� = Y 0 + Y 0 �pr � 1m� � :(Note that the prey will be caught before the time that the lizard has spent waiting, � ,increases.)+ See the appendix for a brief description of the asymptotic notation used in thispaper. 8



Now consider the �nite interval in the statement of Lemma 3 and let Y bethe interval's foraging threshold bound from Lemma 2. Suppose that �b and �eare drawn from the interval with �b � �e and that m�b = n . Let � denoteE[��e j state at time �b ]� ��b . We wish to show that� � (�e � �b)g(n) + O((�e � �b)2);where the constant in the term O((�e � �b)2) depends upon the interval but not upon �bor �e and g(n) = O(n�7=4) does not depend upon the interval (or upon �b or �e ).Consider the time period (�b; �e] (the period of time between �b and �e ), and let�� = �e � �b . Either a prey appears during this period, or not. If no prey appears, theforaging threshold expands by v��=(2n). If exactly one prey appears, then, (by thepreliminary observation), the lizard pursues the prey and adjusts the foraging thresholdby adding Z�b = (Y�b + O(��))(pr � 1)=(n + 1); meanwhile the foraging thresholdexpands by O(��). Let f(y) = (y �X�)4 and let W denote the probability that preyappears during the period. Putting all of this together, we haveE[��e j state at time �b, choice of r] �(1�W )n5=4f �Y�b + v��2n �+W (n+ 1)5=4f (Y�b + Z�b +O(��)) + O((��)2):So, conditioned on the choice of r ,
� � n5=4f �Y�b + v��2n �� n5=4f(Y�b)+W �(n+ 1)5=4f (Y�b + Z�b +O(��))� n5=4f �Y�b + v��2n ��+O(��2):We now derive an upper bound for W . Let Y � denote Y�b + v��=(2n) and notethat the lizard's foraging threshold does not exceed Y � during the period between �band �e . The number of prey that appear within the lizard's foraging threshold duringthis period is dominated by a Poisson random variable with parameter ���Y �2 . So byLemma 1, W � ���Y �2 , which is at most ���(Y 2�b + Y v��=n+ (v��=2n)2). Thus,W � �Y 2�b�� +O((��)2) where the constants in the O((��)2) depend upon the �xedinterval (and therefore, on Y ), but not upon �b and �e . In the interval the second9



derivative of f is bounded, so by Taylor's theorem the value of �=�� conditioned onthe choice of r is as follows:�=�� � n5=4f 0(Y�b)� v2n�+ �Y�b2 �(n+ 1)5=4f �Y�b + Y�bpr � 1n+ 1 �� n5=4f(Y�b)�+O(��): (1)Equation 1 led us to choose the exponent 5=4 in the de�nition of ��b . We want thederivative in Equation 1 to be small even when Y�b is large. This makes it necessary tohave the exponent less than 4=3. Note that the constants in the O(��) can be chosenuniformly for any �b and �e in the �xed interval.Integrating with respect to r , and evaluating Equation 1 at Y�b = X�(1 + z) yieldsa polynomial in z whose coe�cients are functions of n . We need only concern ourselveswith the behavior of these functions when n is large enough. Using Maple [10], we �ndthat �=�� evaluated at Y�b = X�(1 + z) is equal to the following.�=�� = �X�6�� 1 + o(1)12 n1=4z6 � 3 + o(1)2 n1=4z5 � 11 + o(1)4 n1=4z4 + 11 + o(1)3 n�3=4z3+ 1 + o(1)1 n�3=4z2 � 2 + o(1)5 n�7=4z + 1 + o(1)15 n�11=4�+O(��):(2)where the o(1) terms are functions of n converging to 0 as n ! 1 (independentlyof z ).Suppose that n is su�ciently large. Ignoring the O(��) term for the moment, let� denote the �rst term. We consider the following cases.Case 1z � 3n�1=2In this case, the term[(11 + o(1))=4]n1=4z4 is atleast three times as large aseach of the three positiveterms, so � � 0.
Case 2�1 � z � �3n�1=2In this case, the term[(11 + o(1))=4]n1=4z4 is atleast 3=2 times as large asthe term [(3 + o(1))=2]n1=4z5and at least nine times aslarge as each of the threeother positive terms. Thus,� � 0.

Case 3jzj � 3n�1=2In this case, each term isO(n�7=4), so � = O(n�7=4).
10



Note that z � �1. Thus we have that �=�� = O(n�7=4) + O(��) for all valuesof z , for all values of �b and �e contained in a given �nite interval.We will �nd it convenient to de�ne	n� = 8><>:��n ; if � < �n;�� ; if �n � � < �n+1;��n+1 ; if �n+1 � � .As a function of � , 	n� is discontinuous at �n+1 but it is continuous elsewhere.Lemma 4: For any �xed �nite time interval, if �b and �e are drawn from that intervalthen E �	n�e �	n�b� = E h��e � ��b ��� m�b = ni � Pr(m�b = n) + O((��)2);where the constants in the O((��)2) term depend upon n and the �xed interval'smaximum foraging radius from Lemma 2.Proof: Let Y be the interval's maximum foraging radius from Lemma 2 and let
r = E �	n�e �	n�b j m�b = r� . By the linearity of expectation,E �	n�e �	n�b� = 1Xr=1 
r Pr(m�b = r): (3)We now consider possible values of r .Case 1: r > n : In this case, 
r = 0.Case 2: r � n � 1: In this case, if no prey are seen then 	n�e � 	n�b = 0. If oneprey is seen (by Lemma 2, this happens with probability O(��)), then j	n�e � 	n�b j =O(��). Even if two or more prey are seen (by Lemma 2, this happens with probabilityO((��)2)), j	n�e �	n�b j is still O(1). Hence 
r = O((��)2).Case 3: r = n : In this case, let �� = ��e � ��b and �	 = 	n�e � 	n�b . If k preyare found, then j��j � Y 4(n+ k)5=4 and j�	j � Y 4(n+ 1)5=4 , soj�	���j � 2Y 4(n+ k)5=4:If k = 0, then �	 = ��. If k = 1 (with probability O(��), by Lemma 2) thenj�	���j = O(��). Using Lemmas 1 and 2,jE[�	 j m�b = n]� E[�� j m�b = n]j � O((��)2) + 2Y 4 1Xk=2(n+ k)5=4(�Y 2��)k=k!= O((��)2):11



Since 
r = E[�	 j m�b = r] ,
r = E h��e � ��b ��� m�b = ri+O((��)2):Summing over r according to Equation 3, we getE �	n�e �	n�b� = E h��e � ��b ��� m�b = ni � Pr(m�b = n) + O((��)2);where the constants in the O((��)2) term depend upon n and upon the �xed interval.Lemma 5: For all n , E[��n ] � �0 +O(1) . (The O(1) term does not depend on � .)Proof: We start by computing ��n+1 � ��n = 	n1 � 	n0 . To do this, we will useLemmas 3 and 4. Both lemmas may be applied to any �nite interval, so we will applythem to the intervals [0; 1]; [1; 2]; : : :. Any interval [i; i + 1] may be subdivided intosubintervals of size 1=M (for any M > 1). Applying lemmas 3 and 4 to each subintervaland summing givesE �	ni+1 �	ni � = MXj=1E h	ni+j=M �	ni+(j�1)=Mi� MXj=1 ��g(n)=M +O(1=M2)�Pr(mi+(j�1)=M = n) + O(1=M2)� ;where the constants in the O(1=M2) terms depend on the interval [i; i + 1] and on nbut not the subintervals. Taking the limit of both sides as M ! 1 givesE �	ni+1 �	ni � � g(n) Z i+1i Pr(m� = n)d�:Summing over all i we getE[��n+1 � ��n ] � g(n) Z 10 Pr(m� = n) d�: (4)The integral in Equation 4 is the expected waiting time after the nth prey is seen beforethe (n+ 1)st prey is seen. We will show that this is O(n2=3). To see this, consider the(unlikely) event that the lizard has spent n2=3 seconds waiting for the (n + 1)st prey,12



and hasn't seen it yet. Then the total waiting time must be at least n2=3 seconds, andthe foraging threshold, vt2nt , is then at leastvn2=32n = v2n�1=3:So the area of the region that the lizard surveys from this time until the (n+ 1)st preyis at least (�v2=8)n�2=3 . The expected time until a prey appears within just this patchof ground is (8=�v2)n2=3=a . Thus, the expected time spent waiting for the (n + 1)stprey is at most n2=3 + 8a�v2n2=3 = O(n2=3):Since g(n) = O(n�7=4) (from Lemma 3), we conclude that E[��n+1 � ��n ] =O(n�13=12). Since n�13=12 is a convergent series, the expected value of the potentialjust after the nth prey is caught is at most �1 plus some constant independent of n .Theorem 1: With probability one Xt ! X� .Proof: First note that if the lizard returns to the perch at time t after catching thenth prey and the lizard returns to the perch at time t0 after catching the (n+ 1)st prey,then the foraging threshold during the time interval [t; t0] stays in the interval [vt=(2(n+1)); vt0=(2n)] . Equivalently, the foraging threshold during the time interval [t; t0] staysin the range [(vt=(2n))(1� 1=(n + 1)); (vt0=(2(n + 1))(1 + 1=n)] . Note that for all j ,with probability 1, Y�j is the foraging threshold just after the j th prey is caught.Thus, Y�n = vt=(2n) and Y�n+1 = vt0=(2(n + 1)). Thus, if n is su�ciently large,then the foraging threshold during the time interval [t; t0] stays in the interval [X� �1=n1=33; X� + 1=n1=33] unless either Y�n 62 [X� � 1=n1=32; X� + 1=n1=32] or Y�n+1 62[X� � 1=(n+ 1)1=32; X� + 1=(n+ 1)1=32] .Therefore we focus on the subsequence of foraging thresholds Y�n just after thenth prey was caught.Using Markov's inequality and recalling that, with probability 1, m�n = n , we getPr(jX� � Y�n j > ") = Pr(n5=4 jX� � Y�n j4 > n5=4"4)= Pr(��n > n5=4"4)� E[��n ]n�5=4"�4:13



If we take " = n�1=32 and note that, by Lemma 5, E[��n ] is bounded from above bya constant, then we get Pr(jX� � Y�n j > n�1=32) = O(n�9=8):Thus, as the process runs, the expected number of integers n such that the Y�ndeviates from X� by more than n�1=32 is O(1). Almost surely, there are a �nite numberof such integers n , so with probability one, there are only a �nite number of integers nsuch that during the time between the catching of the nth prey and the (n+ 1)st prey,the foraging threshold goes outside of the range [X� � 1=n1=33; X� + 1=n1=33] .5. DiscussionWe have analyzed a simpli�ed version of the general learning problem that facesthe anole. Using very weak assumptions on the distribution of prey, we are able to provethat the sequence of foraging thresholds used by the lizard converges to the foragingthreshold predicted by optimal foraging theory. This analysis con�rms the conclusionsmade by Roughgarden [11] concerning the ability of this learning rule to optimize alizard's foraging behavior.Roughgarden [11] describes a more general version of this problem that includesmore details concerning the energy expenditures of the lizard. Speci�cally, Roughgardenassumes that a lizard expends ew energy per time while waiting and ep energy per timewhile pursuing a prey. The energy obtained from a prey is e . An optimal thresholdsimilar to X� can be derived for this model. An important di�erence of this model isthat the lizard's behavior aims to maximize the current energy gained from a prey. Themodel that we have analyzed assumes that ep = ew , in which case minimizing the timeis equivalent to maximizing the energy. For other parameters, this equivalence does notapply and a di�erent learning rule and convergence analysis is needed.This limits the generality of the result that we have presented. The type of \sit-and-wait" predation model that we have analyzed may be applicable to other organisms.Minimizing the average time spent per prey captured may be reasonable model of op-timal behavior in many contexts, and the the main challenge for adapting our analysisto such organisms would be to account for the speci�c distribution of prey in the or-ganism's environment. For organisms for which this model is not appropriate, a moregeneral model described by Roughgarden [11] would need to be analyzed.14



Two other generalizations considered by Roughgarden model are (i) the ability ofprey to escape from the lizard and (ii) the existence of di�erent categories of prey thathave di�ering energetic value. From Roughgarden's discussion of model (ii), it is clearthat a convergence proof for the previous model would immediately generalize to thismodel. However, for model (i) a convergence analysis will be much more di�cult. Infact, Roughgarden is unable to determine an analytic value for the foraging thresholdpredicted by optimal foraging for a speci�c model of prey behavior.One assumption made by these models is that the lizard does not compete withother lizards while learning its optimal foraging threshold. While Roughgarden hasconsidered models that allow this competition [12], his justi�cation for the currentmodel is that the foraging threshold simply determines how many lizards there can bein a region.Finally, we note that other learning rules might yield simpler analysis. Erik Or-dentlich [9] has observed that the time that the lizard would take to run to the thresholdand back is equal to the average time that the lizard has spent per prey. We suspectthat other learning rules based on this observation might also converge. Nick Littlestonehas observed [5] that the time that the lizard spends waiting is, in the limit, half of thetime that the lizard spends running. This suggests a simple learning rule { adjust theradius whenever the ratio between the running time and waiting time is wrong. Thislearning rule only requires division by two and and not general division, which may bemore biologically plausible.AppendixIn this paper, we use asymptotic notation to specify bounds on how functionsbehave in the limit. For details about this notation see (for example) Chapter 2 of [1].To aid the reader, we give brief de�nitions of the notation (from [1]) here.For functions f and g , we say that f(n) = o(g(n)) if and only if limn!1 f(n)g(n) = 0:We say that f(n) = O(g(n)) if and only if there are positive constants c and n0 suchthat for all n � n0 we have f(n) � cg(n).When we say that a quantity is \at most O(g(n))", we mean that there is a functionf(n) such that f(n) = O(g(n)) and the quantity is at most f(n). Similarly, when wesay \f(n) = g(n) + O(h(n))", we mean that there is a function j(n) = O(h(n)) suchthat f(n) = g(n) + j(n). References15



1 T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms(MIT Press 1990).2 W. Feller, An Introduction to Probability Theory and its Applications, Volume 1,3rd Edition, John Wiley and Sons, 1968.3 J. Koza, Genetic programming: On Programming Computers by Means of NaturalSelection and Genetics, The MIT Press, Cambridge, MA, 1992, pp. 314{328.4 J. R. Krebs and N. B. Davies, Behavioral Ecology. Second Edition. Blackwell,Oxford, 1984.5 N. Littlestone, Personal communication, July, 1996.6 M. Mangel and C. W. Clark, Dynamic Modeling in Behavioral Ecology. Prince-ton University Press, Princeton N.J., 1988.7 J. M. McNamara, An optimal sequential policy for controlling a Markov renewalprocess, J. Appl. Prob., 22, 324-335, 1985.8 F. Menczer, W. E. Hart, and M. L. Littman, Appendix to S. Sha�r and J.Roughgarden's `The E�ect of Memory on Individual Fitness in a Lizard', AdaptiveIndividuals in Evolving Populations: Models and Algorithms, Ed. R. K. Belew andM. Mitchell, Addison-Wesley, SFI Studies in the Sciences of Complexity Vol. 26,183-186, 1996.9 E. Ordentlich, Personal communication, July, 1996.10 D. Redfern, The Maple Handbook, Springer-Verlag, New York, 1993.11 J. Roughgarden, Anolis lizards of the Caribbean: Ecology, evolution and platetectonics. Oxford Univ. Press, 1995.12 J. Roughgarden, Personal communication, September, 1995.13 S. Shafir and J. Roughgarden, The e�ect of memory length on individual �tnessin a lizard, Adaptive Individuals in Evolving Populations: Models and Algorithms,Ed. R. K. Belew and M. Mitchell, Addison-Wesley, SFI Studies in the Sciences ofComplexity Vol. 26, 173-182, 1996.

16


