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Coalitional games raise a number of important questions from the point of view of computer science, key
among them being how to represent such games compactly, and how to efficiently compute solution concepts
assuming such representations. Marginal contribution nets (MC-nets), introduced by Ieong and Shoham, are
one of the simplest and most influential representation schemes for coalitional games. MC-nets are a rule-
based formalism, in which rules take the form pattern −→ value, where “pattern” is a Boolean condition over
agents, and “value” is a numeric value. Ieong and Shoham showed that, for a class of what we will call “basic”
MC-nets, where patterns are constrained to be a conjunction of literals, marginal contribution nets permit the
easy computation of solution concepts such as the Shapley value. However, there are very natural classes of
coalitional games that require an exponential number of such basic MC-net rules. We present read-once MC-
nets, a new class of MC-nets that is provably more compact than basic MC-nets, while retaining the attractive
computational properties of basic MC-nets. We show how the techniques we develop for read-once MC-nets
can be applied to other domains, in particular, computing solution concepts in network flow games on series-
parallel networks.
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1 Introduction
Coalitional games raise a number of important questions from the point of view of computer science, key among
them being how to represent such games compactly, and how to efficiently compute solution concepts assum-
ing such compact representations. The aim is typically to develop a representation that is compact for cases
of interest, and yet allows the efficient computation of solution concepts. Accordingly, a number of compact
representation schemes for coalitional games have been proposed, with various computational properties. For
example, Deng and Papadimitriou [1] consider a representation of coalitional games based on weighted graphs:
nodes in a graph correspond to players, and to compute the value of a particular coalition C, one computes the
total weight of the sub-graph induced by C. The representation is compact because the size of a game repre-
sented in this way is at most quadratic in the number of players. Deng and Papadimitriou showed that for this
representation, computing the Shapley value, one of the key solution concepts in coalitional games, is computa-
tionally easy. However, the weighted subgraph representation is not complete, in that there are some coalitional
games which simply cannot be represented using this approach. An obvious research question is therefore to con-
sider how to generalise the approach of [1] as far as possible, without losing its desirable properties. One of the
simplest and most influential such generalisations is the marginal contribution nets (MC-nets) scheme of Ieong
and Shoham [2]. MC-nets are a rule-based formalism, in which rules take the form pattern −→ value, where
“pattern” is a Boolean condition over agents, and “value” is a numeric value. Ieong and Shoham showed that,
for a class of what we will call “basic” MC-nets, where patterns are constrained to be a conjunction of literals,
marginal contribution nets permit the easy computation of solution concepts such as the Shapley value. A number
of researchers have built on the Ieong and Shoham model of marginal contribution nets, for example, considering
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the application of marginal contribution nets to non-transferable utility games [3, 4]. In separate, but closely
related work, the use of “weighted formulae” representations, essentially identical to marginal contribution nets,
have been studied in the context of representing utility functions and capturing preference relations [5].

Given this interest in the use of marginal contribution nets and related formalisms, it is very natural to consider
the extent to which the basic formalism of Ieong and Shoham can be extended and enriched, while retaining the
attractive computational properties they established. In particular, there are very natural classes of coalitional
games that require an exponential number of “basic” MC-net rules, and while it is easy to define more compact
generalisations of MC-nets, the most obvious such extensions lose the attractive tractability properties of basic
MC-nets. The following two questions therefore suggest themselves: (i) Is it possible to extend basic MC-nets, to
allow compact representation of those cases where basic MC-nets fail, while retaining the desirable computational
properties of basic MC-nets? (ii) As we generalise basic MC-nets, at what point does the representation cross the
threshold from tractable to intractable? It is to these two questions—and in particular the first—that we address
ourselves in this paper. Our main contributions are as follows.

First, we show that the obvious generalisation of basic MC-nets leads to intractability with respect to comput-
ing the Shapley value. We then present a simple and intuitive generalisation of basic MC-nets called read-once
MC-nets. We show that read-once MC-nets are exponentially more compact than basic MC-nets, in that there
exists a very natural class of coalitional games that can be represented compactly using read-once MC-nets, but
which would require an exponential number of basic MC-net rules. We then prove that read-once MC-nets retain
the desirable computational properties of basic MC-nets: in particular, it is possible to compute in polynomial
time the Shapley values of players in a game represented as a read-once MC-net. We then demonstrate that our
approach has wider applicability. We show that our algorithm for the Shapley value on read-once MC-nets yields
a pseudopolynomial time algorithm for computing the Shapley value in network flow games on series-parallel
networks, which were introduced in the context of multi-agent systems in [6]. Moreover, this algorithm can also
be used to compute Banzhaf power index in such games. We begin, in the following section, by recalling the
basic framework of coalitional games and MC-nets.

2 Preliminaries and Notation
In this section, we define the basic concepts in coalitional game theory that are used throughout the remainder of
the paper; see, e.g., [7] for more detail.

2.1 Coalitional Games
A coalitional game G = (I, v) is given by a set of agents I = {x1, . . . , xn}, |I| = n, and a characteristic
function v : 2I → R that maps any subset (coalition) of the agents to a real value. This value is the total utility
these agents can guarantee to themselves when working together. To simplify notation, we will sometimes write
i instead of xi.

A coalitional game is monotone if for any S ⊂ T ⊆ I we have v(S) ≤ v(T ). A monotone game is simple
if v can only take values 0 and 1, i.e., v : 2I → {0, 1}. In such games, we say that a coalition C ⊆ I wins if
v(C) = 1, and loses if v(C) = 0. An agent i is critical, or pivotal, to a winning coalition C if the agent’s removal
from that coalition would make it a losing coalition: v(C) = 1, v(C \ {i}) = 0.

2.2 The Shapley Value
The Shapley value of an agent captures his marginal contribution to possible coalitions. Let Π be the set of
all permutations (orderings) of n agents. Each π ∈ Π is a one-to-one mapping from {1, . . . , n} to {1, . . . , n}.
Denote by Sπ(i) the set of all predecessors of agent i in π, i.e., Sπ(i) = {j | π(j) < π(i)}. The Shapley value
of the ith agent in a game G = (I, v) is denoted by φG(i) and is given by the following expression:

φG(i) =
1
n!

∑

π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

We will sometimes omit the index G if it is clear from the context. We will say that an agent i is pivotal for a
permutation π if it is pivotal for the coalition Sπ(i) ∪ {i}.
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For simple games, the formula (1) counts the fraction of all orderings of the agents in which agent i is critical
for the coalition formed by his predecessors and himself. It thus reflects the assumption that when forming a
coalition, any ordering of the agents entering the coalition has an equal probability of occurring, and expresses
the probability that agent i is critical. In general, the Shapley value can be viewed as an agent’s expected marginal
contribution to the value of a coalition, under the probability model described above.

The Shapley value is the only payoff division scheme that satisfies the following natural axioms:

Efficiency: It fully distributes the total payoff available to the agents:

n∑

i=1

φG(i) = v(I).

Symmetry: If agents i and j are interchangeable, i.e., for any S ⊆ I \ {i, j} we have v(S ∪ {i}) =
v(S ∪ {j}), then φG(i) = φG(j).

Dummy: If an agent i does not contribute to any coalition, i.e., v(S) = v(S ∪ {i}) for any S ⊆ I \ {i},
then φG(i) = 0.

Additivity: For any two coalitional games G = (I, v) and G′ = (I, v′) defined over the same set of agents
I , for the coalitional game G + G′ given by (G + G′) = (I, v + w) we have

φG+G′(i) = φG(i) + φG′(i).

2.3 Banzhaf Power Index

The Banzhaf power index was originally defined in the context of weighted voting games [8]. However, it can
be used to measure an agent’s power in any coalitional game. Similarly to the Shapley value, it reflects the
agent’s expected marginal contribution to the value of a coalition. However, the underlying probabilistic model
of coalition formation is different: rather than assuming that the agents join the coalition in random order and
thus all permutations of the agents are equally likely, it assigns equal probability to all 2n possible coalitions.
Formally, the Banzhaf share βG(i) of an agent i in a game G is computed as follows:

βG(i) =
1

2n−1

∑

S:i %∈S

[v(S ∪ {i})− v(S)]. (2)

While Banzhaf power index satisfies the symmetry axiom and the dummy axiom, it may violate the efficiency
axiom as well as the additivity axiom.

3 Marginal Contribution Nets

In this section, we define marginal contribution networks (MC-nets), summarise previous results on computing
various solution concepts for a restricted subclass of MC-nets, and show how to extend these results to a larger
class of MC-nets. We also discuss the limitations of our approach, showing that in the most general setting the
problem becomes NP-hard.

3.1 Previous Work

Marginal contribution networks (MC-nets) were proposed by Ieong and Shoham [2] in 2005. MC-nets provide
a flexible and fully expressive representation scheme, which describes a coalitional game using a set of rules. In
more detail, a marginal contribution network is given by a set of agents I = {x1, . . . , xn} and a finite collection
of rules of the form (P → V ), where V ∈ R is the value of the rule, and P , which is a Boolean expression over
the set I , is the pattern of the rule. A set S ⊆ I of agents is said to meet the requirements of a given pattern P
(denoted by S |= P ) if P evaluates to true when the values of all Boolean variables that correspond to agents
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in S are set to true, and the values of all Boolean variables that correspond to agents in I \ S are set to false.
The value v(S) of a group of agents S is defined to be the sum over the values of all rules that apply to it, i.e.,

v(S) =
∑

P→V :S|=P

V.

While the definition of MC-nets proposed by Ieong and Shoham [2] is quite general, the computational results
for Shapley value in [2] are limited to a special case of this representation, namely, the setting where the patterns
in all rules are required to be conjunctions of literals, i.e., expressions of the form

xi1 ∧ · · · ∧ xik ∧ x̄j1 ∧ · · · ∧ x̄jl .

In the rest of the paper, we call such rules basic, and say that an MC-net is basic if it only uses basic rules. In [2],
the authors show (Proposition 1, [2]) that even this restricted class of marginal contribution networks is universal,
i.e., can be used to represent any coalitional game (perhaps using an exponential number of rules). Moreover, they
show that this representation is at least as succinct as some other well-known representation languages, such as
multi-issue representation [9] or graphical form representation [1], and in some cases can be exponentially more
succinct. Finally, [2] provides a polynomial-time algorithm for computing the Shapley value in basic MC-nets.

Paper [2] also discusses the complexity of the core (another important solution concept in coalitional games)
for games represented as MC-nets. In more detail, in [2] the authors show that the problem of determining
whether a given payoff vector is in the core is coNP-complete, and deciding core non-emptiness is coNP-hard;
these results hold even for basic MC-nets. On the positive side, the authors provide a polynomial time algorithm
for these problems in the special case where the graphical representation of the MC-nets has bounded treewidth
(however, the MC-net does not have to be basic). Subsequently, Malizia et al [3] answer the open question
of [2] by showing that deciding core non-emptiness is in coNP. Taken together, these results suggest that for
core-related questions the types of rules that appear in the MC-net (basic rules vs. general rules) do not influence
the computational complexity. Hence, in what follows we will not discuss the core and core-related problems.

3.2 Limitations of Basic MC-Nets
In basic MC-nets, the formulas used in the rules are required to be conjunctions of literals. For example, x1∧x̄2 →
V is a rule that can appear in a basic MC-net. However, when using coalitional games to describe multi-agent
systems, in addition to explicitly listing the agents whose presence/absence is necessary for completing a task,
one may want to express the fact that some of the agents are substitutes for a particular task. A natural way to
represent this would be by using disjunction (i.e., the ∨ connective). For instance, suppose that a certain task
can be completed by a team that includes agent x1 and one of the agents x2 and x3 (e.g., because x2 and x3

have identical skills, but x1 has a unique set of skills different from that of x2 and x3). This information can be
represented by a rule of the form

(x1 ∧ (x2 ∨ x3)) → V, (3)

where V is the value of this task. However, x1 ∧ (x2 ∨ x3) is not a conjunction of literals and hence (3) is not a
basic rule.

To overcome this difficulty, in [2], the authors show how to represent any coalitional game using basic rules.
Indeed, if we want to describe a coalitional game that corresponds to (3), we can do so using two basic rules,
namely, x1 ∧ x2 → V and x1 ∧ x3 ∧ x̄2 → V . However, in some cases such transformation may lead to a
superpolynomial blow-up in the representation size, at least if we restrict the values associated with rules to be
non-negative. Consider the following example.

Example 3.1 Consider a set of 2n agents, each of which has exactly one skill. Suppose that there are n skills
in all, and that agents 2i and 2i − 1 have the i’th skill. Suppose that there is a task of value V > 0 that can be
completed using all n skills. If we allow disjunctions in rules, then this situation may naturally be represented by
the following rule:

(x1 ∨ x2) ∧ · · · ∧ (x2n−1 ∨ x2n) → V. (4)

However, we will now show that to replace this rule with a collection of basic rules with non-negative values, we
will need a superpolynomial number of rules.
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Theorem 3.2 In Example 3.1, one needs Ω(2n) basic rules with non-negative values1 to represent the game
given by (4).

P r o o f. Consider a collection of basic rules that represent the game given by rule (3). We can assume that
each rule in this collection is satisfiable. Observe that for all i in {1, . . . , n}, every basic rule in the collection
must contain a non-empty subset of {x2i, x2i−1}. Indeed, if that is not the case for some i, consider the set R
of rules that do not contain those literals, where R *= ∅. If we put x2i = x2i−1 = false, rules in R should be
satisfied by some values of the remaining Boolean variables, and should give associated positive values to the
coalition satisfying them. That is a contradiction, since the total value should be 0 if x2i = x2i−1 = false.

Define a minimum satisfying assignment (MSA) to be a satisfying assignment where for each pair {x2i, x2i−1},
only one of x2i, x2i−1 is set to true. There are 2n MSAs. We claim that if σ and τ are distinct MSAs then the
set of basic rules satisfied by σ does not intersect the set of basic rules satisfied by τ . This implies that there are at
least 2n basic rules. To establish the claim, note that there is some i such that one of σ and τ has x2i = true and
the other has x2i−1 = true. All rules satisfied by the MSA with x2i = true must contain the literal x2i—this
is due to the observation that at least one of {x2i, x2i−1} must be present, and the literal x2i−1 would not be
satisfied. However, those rules cannot be satisfied by the other MSA.

Moreover, it turns out that even if we do not restrict the values to be non-negative, there are natural coalitional
games that cannot be compactly represented by basic MC-nets. The following theorem gives an example of such
a game. (We will see later that it can be compactly represented by a read-once MC-net.)

Theorem 3.3 Consider a game G = (I, v), I = {1, . . . , n}, described by the MC-net H = [I, 1⊕· · ·⊕n → 1]
where n ≥ 2. To represent G as a basic MC-net, one needs Ω((3/2)n/2) basic rules.

Observe that in G a coalition S has value 0 if its size is even, and has value 1 if its size is odd. Games of this
kind can arise when, to achieve the task, the agents have to elect one agent as a leader (coordinator), and split all
remaining agents into two equal-sized groups. We now proceed to prove Theorem 3.3.

P r o o f. Given a conjunction of literals (a clause) C, let SC be the set of all satisfying assignments for C, i.e.,
set

SC = {(x1, . . . , xn) ∈ {0, 1}n | (x1, . . . , xn) |= C}.

We will refer to SC as the subcube associated with C, or simply a subcube.
We will say that a truth assignment x = (x1, . . . , xn) ∈ {0, 1}n is even if x1 ⊕ · · · ⊕ xn = 0 and odd if

x1 ⊕ · · ·⊕ xn = 1. Given a function f : {0, 1}n → R, let us say that a subcube SC is f -active if
∑

x∈SC
x is even

f(x)−
∑

x∈SC
x is odd

f(x) *= 0.

Note that all subcubes of size at least two are active with respect to the function f = x1 ⊕ · · · ⊕ xn (where the
values of f are interpreted as reals), as this function has value 1 on all odd assignments, and value 0 on all even
assignments. Also, a subcube of size at least 2 has at least one odd assignment.

Now consider a basic MC-net H ′ with t rules. Let v′ be the characteristic function of the corresponding game.
We will now demonstrate that if t < (3/2)n/2/2, there exists a subcube of size at least two which is not v′-active.
This implies that the MC-net H ′ is not equivalent to [I, 1⊕ · · ·⊕n → 1]. As this is the case for any basic MC-net
of such size, it follows that one needs Ω((3/2)n/2) basic rules to represent the game G.

Our proof is by the probabilistic method: we will randomly select a subcube and show that, with high proba-
bility, this subcube is of size at least two, but is not active with respect to v′. This implies that there exists at least
one such subcube.

To generate a subcube, we construct the corresponding clause C by deciding, independently for each i =
1, . . . , n, whether to include xi, ¬xi or neither: with probability 1/3, we include xi, but not ¬xi, with proba-
bility 1/3, we include ¬xi, but not xi, and with probability 1/3 we include neither of them. Observe that with
probability at least 1− (2/3)n the resulting subcube SC has size at least two.

1 We believe that Theorem 3.2 remains true even if we do not restrict the values to be non-negative. However, the proof presented here
relies on the non-negativity assumption in an essential way.
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For any rule R = (P, V ) of H ′, let r be a function from {0, 1}n to R given by r(x) = 1 if and only if
x |= P . Consider a rule R = (P, V ) of H ′ that contains more than n/2 variables. Then with probability at least
1 − (2/3)n/2 there exists some i ∈ {1, . . . , n} such that P contains xi, but C contains ¬xi or P contains ¬xi,
but C contains xi. If this is the case, then, for every x ∈ SC we have x *|= P so r(x) = 0. Thus, SC is not
r-active.

On the other hand, consider a rule R = (P, V ) of H ′ that contains at most n/2 variables. With probability at
least 1 − (2/3)n/2, there exists an i ∈ {1, . . . , n} such that xi,¬xi *∈ C and neither xi nor ¬xi appears in P .
For any even truth assignment x ∈ SC such that x |= P , there exists an odd truth assignment x′ ∈ SC such that
x′ |= P and vice versa: indeed, x′ can be obtained from x by flipping the ith coordinate. Hence, in this case, too,
SC is not r-active.

By union bound, the probability that SC is of size one or that at least one of the rules in H ′ activates SC

is at most t(2/3)n/2 + (2/3)n. Therefore, if t < (3/2)n/2/2, with non-zero probability the random subcube
generated in this manner has size at least two but is not v′-active. We conclude that if t < (3/2)n/2/2, then
v′ *≡ x1 ⊕ · · ·⊕ xn.

Remark 3.4 It is interesting to compare our results on the expressivity of basic MC-nets to those of [5], where
the authors discuss similar issues in the context of using weighted Boolean formulas to express individual agents’
preferences. In particular, Theorem 4.15 of [5] is essentially equivalent to our Theorem 3.3. However, paper [5]
uses a different proof technique: namely, it relies on the Fourier transform on Boolean domains, while our proof
is by the probabilistic method. Also, Theorem 4.19 of [5] is equivalent to our Theorem 3.2.2

3.3 Intractability of Computing Shapley Value for General MC-nets
The results of the previous section suggest that we can obtain exponentially more compact representation by
allowing the use of arbitrary Boolean expressions in the patterns. However, if we do so, we may lose an important
property possessed by basic rules, namely, that of polynomial-time computability of agents’ Shapley values.

Indeed, [2] shows how to efficiently compute Shapley values for basic marginal contribution nets. First, the
authors observe that the Shapley value is additive over rules, and then they give an explicit formula for the Shapley
value of each agent under a given basic rule. This provides a polynomial-time algorithm for computing Shapley
values of all agents in basic MC-nets. However, for rules that use arbitrary Boolean formulas such an algorithm
is unlikely to exist.

Theorem 3.5 Given a game (I, v) represented by a general MC-net, i.e., an MC-net in which the patterns in
the rules can be arbitrary Boolean expressions, and an agent i ∈ I , it is coNP-complete to decide whether i’s
Shapley value is 0. This holds even if the coalitional game in question is described by a single rule.

P r o o f. To see that this problem is in coNP, observe that to show that i’s Shapley value is not equal to 0, it
suffices to exhibit a set S ⊂ I \{i} such that v(S) *= v(S∪{i}). The hardness proof is by reduction from 3-SAT.
An instance of 3-SAT is given by a set of Boolean variables X = {x1, . . . , xn}, and a set of clauses c1, . . . , cm,
where each clause is a disjunction of at most three literals, i.e., the variables from X or their negations. It is a
“yes”-instance if the formula c1 ∧ · · · ∧ cm is satisfiable and a “no”-instance otherwise.

Given an instance of 3-SAT, consider a coalitional game with n + 1 agents, and a rule of the form c1 ∧ · · · ∧
cm ∧ xn+1 → 1, where xn+1 is a variable that does not appear in X . It is easy to see that the Shapley value of
the (n + 1)st player is greater than zero if and only if the original instance of 3-SAT is satisfiable.

As a corollary, it is NP-hard to approximate the Shapley value with any positive multiplicative error. Indeed,
if we could efficiently approximate the Shapley value, then we could certainly check whether a player’s Shapley
value is greater than zero.

Remark 3.6 Our hardness result also applies to computing Banzhaf power shares. Indeed, the Banzhaf index
satisfies the dummy axiom. Therefore, the proof of Theorem 3.5 shows that the original instance of 3-SAT is
satisfiable if and only if the Banzhaf power share of the (n + 1)st player is greater than zero.

2 Paper [5] appears in the same issue of Mathematical Logic Quarterly. While Theorem 3.2 appears in the conference version of our
paper, and the authors of [5] explicitly make use of our proof of this theorem to derive Theorem 4.19 in their paper, Theorem 3.3 was not
present in the conference version of our paper, and seems to be discovered independently by the two teams.
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Shapley(N = [{x1, . . . , xn}, (F1 → V1), . . . , (Fr → Vr)])
1. set t1 = t2 · · · = tn = 0;
2. for j = 1, . . . , r
3. [A,B,T,F] =Sh(Fj);
4. for i = 1, . . . , n
5. if Fj contains xi

6. set vi = 1
n!

∑n
k=0 k!(n− k − 1)!Ak,i;

7. if Fj contains x̄i

8. set vi = − 1
n!

∑n
k=0 k!(n− k − 1)!Bk,i;

9. if Fj contains neither, set vi = 0;
10. set ti = ti + Vj · vi;
11. return (t1, . . . , tn);

Fig. 1 Algorithm Shapley(N). (The subroutine Sh(F) is given in the appendix and described informally in the proof of
Theorem 3.9, where relevant definitions are given.)

3.4 Read-once MC-nets
We have seen that there are natural coalitional games that cannot be compactly described by basic MC-nets. On
the other hand, the previous subsection shows that using arbitrary patterns in MC-nets leads to computational
intractability. Therefore, we would like to identify a class of Boolean formulas that is more expressive than
conjunctions (and, in particular, is rich enough to express the fact that certain agents are substitutes with respect
to a certain subtask), and yet allows for polynomial-time computation of Shapley values. In what follows, we
show that these two conditions are satisfied by the class of read-once Boolean formulas. Informally, in a read-
once Boolean formula, each variable can only appear once. This condition has a natural interpretation in the
coalitional game setting: each agent has a set of skills/disabilities that can be useful/harmful in achieving a
certain subtask; the agents can be substitutes with respect to a subtask; but no agent can contribute to more than
one subtask. The subtasks are then combined into a task using Boolean connectives, such as ∧ and ∨. Read-once
boolean formulae have an important role in several areas of computer science. For example, in computational
learning theory, read-once boolean functions are of interest since they can be efficiently learned [10].

The formal definition of read-once formulae is as follows.
Definition 3.7 A read-once Boolean formula is a binary rooted tree in which each internal node is labelled

with a Boolean connective, such as ∧, ∨ or ⊕, the leaves are labelled with literals (i.e., variables or their nega-
tions), and each variable appears in at most one leaf.

Remark 3.8 Our algorithm for computing the Shapley value (presented below) can be extended to the case
when negations appear as nodes of indegree one throughout the tree. However, it is easy to see that any such
formula can be transformed into one of the form described in Definition 3.7 with at most polynomial overhead.
Therefore, in what follows we restrict our attention to formulas where negations can only appear in the leaves.

We will refer to MC-nets that use read-once Boolean formulas in their patterns as read-once marginal contri-
bution networks. It is easy to see that the formulas used in Example 3.1 and Theorem 3.3 are, in fact, read-once
Boolean formulas, so this representation can be considerably more compact than basic MC-nets. On the other
hand, we will now show that for this class of rules it is still possible to compute the Shapley values of all players
in polynomial time.

Theorem 3.9 Given an MC-net of the form N = [I, (F1 → V1), . . . , (Fr → Vr)], where I = {x1, . . . , xn},
V1, . . . , Vr ∈ Z, and F1, . . . ,Fr are read-once Boolean formulas, the algorithm Shapley(N) presented in Fig-
ure 1 computes the vector of Shapley values of all players (φN (1), . . . ,φN (n)). Moreover, the running time of
this algorithm is poly(n, r,maxj log |Vj |).

P r o o f. We present the algorithm for the case where the only Boolean connectives that appear in F1, . . . ,Fr

are ∨, ∧ and ⊕. All other Boolean connectives can be handled in a similar manner. Let XF be the set of agents
corresponding to variables that appear in a formula F . To simplify notation, we will denote the ith element of I
by i rather than xi. Recall that we say that a coalition X satisfies a formula F (and write X |= F) if F is satisfied
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10 Elkind, Goldberg, Goldberg, and Wooldridge: Marginal Contribution Networks

by a truth assignment in which the variables that correspond to agents in X are set to true, while the variables
that correspond to agents not in X are set to false.

Suppose that F is a subformula (subtree) of an input formula Fj . For all i ∈ XF and k ∈ {0, . . . , n}, we now
define the following quantities.

• Ak,i(F) = |{X ⊆ XF : |X| = k, i *∈ X, X *|= F , X ∪ {i} |= F}|

• Bk,i(F) = |{X ⊆ XF : |X| = k, i *∈ X,X |= F , X ∪ {i} *|= F}|

• Tk(F) = |{X ⊆ XF : |X| = k,X |= F}|

• Fk(F) = |{X ⊆ XF : |X| = k, X *|= F}|

The first two of these quantities denote the number of subsets (of a given size k) of agents for which the addition
of agent i causes a given formula to become respectively satisfied, or unsatisfied. The latter two denote the
number of subsets (of size k) of agents that respectively satisfy, or fail to satisfy, a formula. These quantities are
computed recursively as follows.

First, suppose that F = xj . We have A0,i(F) = 1 if i = j and 0 otherwise, and Ak,i(F) = 0 for k > 0.
Similarly, Bk,i(F) = 0 for all k ≥ 0. Finally, Tk(F) = 1 if k = 1 and 0 otherwise, Fk(F) = 1 if k = 0 and 0
otherwise.

Next, suppose that F = x̄j . We have Ak,i(F) = 0 for any k = 0, . . . , n, Bk,i(F) = 1 if k = 0 and 0
otherwise, Tk(F) = 1 if k = 0 and 0 otherwise, Fk(F) = 1 if k = 1 and 0 otherwise.

Now, suppose that F = F1 ∨ F2, and we have computed Ak,i(Fj), Bk,i(Fj), Tk(Fj), and Fk(Fj) for
i = 1, . . . , n, k = 0, . . . , n and j = 1, 2.

Note that since F is a read-once formula, each variable xi (or its negation) may appear in F1 or F2, but not
in both of these subformulas. First, suppose that i ∈ XF1 . Consider a set Y ⊆ XF \ {i} of size k such that
Y1 = Y ∩ XF1 has size s and Y2 = Y ∩ XF2 has size k − s. We have Y *|= F if and only if Y1 *|= F1 and
Y2 *|= F2. Moreover, in this case Y ∪ {i} |= F if and only if Y1 ∪ {i} |= F1. Therefore, Y can contribute to
Ak,i(F) if and only if Y1 contributes to As,i(F1) and Y2 contributes to Fk−s(F2). Consequently,

Ak,i(F) =
k∑

s=0

As,i(F1)Fk−s(F2).

Similarly, we have Y ∪ {i} *|= F if and only if Y1 ∪ {i} *|= F1 and Y2 *|= F2. Moreover, in this case Y |= F if
and only if Y1 |= F1. Therefore, Y can contribute to Bk,i(F) if and only if Y1 contributes to Bs,i(F1) and Y2

contributes to Fk−s(F2). Consequently,

Bk,i(F) =
k∑

s=0

Bs,i(F1)Fk−s(F2).

Similarly, if i ∈ XF2 , we have

Ak,i(F) =
k∑

s=0

As,i(F2)Fk−s(F1), Bk,i(F) =
k∑

s=0

Bs,i(F2)Fk−s(F1).

Finally, in both cases we have

Tk(F) =
k∑

s=0

(Ts(F1)Tk−s(F2) + Fs(F1)Tk−s(F2) + Ts(F1)Fk−s(F2))

Fk(F) =
k∑

s=0

Fs(F1)Fk−s(F2).

The case when F = F1 ∧ F2 is similar. First, suppose that i ∈ XF1 . Consider a set Y ⊆ XF \ {i} of size k
such that Y1 = Y ∩ XF1 has size s and Y2 = Y ∩ XF2 has size k − s. We have Y ∪ {i} |= F if and only if
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Y1∪{i} |= F1 and Y2 |= F2. Moreover, in this case Y *|= F if and only if Y1 *|= F1. Therefore, Y can contribute
to Ak,i(F) if and only if Y1 contributes to As,i(F1) and Y2 contributes to Tk−s(F2). Consequently,

Ak,i(F) =
k∑

s=0

As,i(F1)Tk−s(F2).

Furthermore, we have Y |= F if and only if Y1 |= F1 and Y2 |= F2. Moreover, in this case Y ∪ {i} *|= F if and
only if Y1 ∪ {i} *|= F1. Therefore, Y can contribute to Bk,i(F) if and only if Y1 contributes to Bs,i(F1) and Y2

contributes to Tk−s(F2). Consequently,

Bk,i(F) =
k∑

s=0

Bs,i(F1)Tk−s(F2).

Similarly, if xi ∈ XF2 , we have

Ak,i(F) =
k∑

s=0

As,i(F2)Tk−s(F1), Bk,i(F) =
k∑

s=0

Bs,i(F2)Tk−s(F1).

Also, in both cases we have

Tk(F) =
k∑

s=0

Ts(F1)Tk−s(F2)

Fk(F) =
k∑

s=0

(Fs(F1)Fk−s(F2) + Fs(F1)Tk−s(F2) + Ts(F1)Fk−s(F2)).

Finally, suppose F = F1 ⊕ F2. First, suppose that i ∈ XF1 . Consider a set Y ⊆ XF \ {i} of size k such
that Y1 = Y ∩ XF1 has size s and Y2 = Y ∩ XF2 has size k − s. Now, the set Y can contribute to Ak,i(F)
in two ways: (1) Y1 |= F1 and Y2 |= F2 and Y1 ∪ {i} *|= F1 (in which case Y1 contributes to Bs,i(F1) and Y2

contributes to Tk−s(F2)) or (2) Y1 *|= F1 and Y2 *|= F2 and Y1 ∪ {i} |= F1 (in which case Y1 contributes to
As,i(F1) and Y2 contributes to Fk−s(F2)). Consequently,

Ak,i(F) =
k∑

s=0

(Bs,i(F1)Tk−s(F2) + As,i(F1)Fk−s(F2)).

Similarly,

Bk,i(F) =
k∑

s=0

(Bs,i(F1)Fk−s(F2) + As,i(F1)Tk−s(F2)).

Similarly, if i ∈ XF2 , we have

Ak,i(F) =
k∑

s=0

(Bs,i(F2)Tk−s(F1) + As,i(F2)Fk−s(F1))

Bk,i(F) =
k∑

s=0

(Bs,i(F2)Fk−s(F1) + As,i(F2)Tk−s(F1)).

Finally, in both cases we have

Tk(F) =
k∑

s=0

Ts(F1)Fk−s(F2) + Fs(F1)Tk−s(F2)

Fk(F) =
k∑

s=0

Fs(F1)Fk−s(F2) + Ts(F1)Tk−s(F2)
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12 Elkind, Goldberg, Goldberg, and Wooldridge: Marginal Contribution Networks

The algorithm Sh(F) for recursive computation of Ak,i(F), Bk,i(F), Tk(F), and Fk(F) outlined above is
formally described in the appendix. For any formula F , the algorithm Sh(F) returns four lists of numbers,
namely, A = {Ak,i | k = 0, . . . , n, i = 1, . . . , n}, B = {Bk,i | k = 0, . . . , n, i = 1, . . . , n}, T = {Tk |
k = 0, . . . , n}, and F = {Fk | k = 0, . . . , n}. The entries in these lists correspond to the quantities Ak,i(F),
Bk,i(F), Tk(F), and Fk(F) defined above.

Our main algorithm Shapley(N) is described in Figure 1. It uses the algorithm Sh(F) as a subroutine. To
prove the correctness of our algorithm, it remains to show that lines 5–8 of our algorithm correctly compute the
Shapley value of agent i in the MC-net Nj given by a single rule Fj → 1: by the linearity of the Shapley value,
this would imply that the output of our algorithm is indeed the list of Shapley values of the agents in N .

Consider an agent i in the game described by Nj . As Fj is a read-once formula, it can contain xi or x̄i,
but not both. If the formula Fj contains xi, then i’s contribution to the value of any coalition is non-negative.
Furthermore, for any coalition of size k counted in Ak,i(Fj), the agent i contributes 1 to the value of this coalition
if he appears in a permutation right after the members of this coalition. Therefore, we have

φNj (i) =
1
n!

n∑

k=0

k!(n− k − 1)!Ak,i(Fj). (5)

Similarly, if the formula Fj contains x̄i, then i’s contribution to the value of any coalition in Nj is non-positive
and can be computed as

φNj (i) = − 1
n!

n∑

k=0

k!(n− k − 1)!Bk,i(Fj). (6)

This is exactly the formulas used by our algorithm to compute the Shapley values of all players in Nj . We
conclude that Shapley(N) correctly computes the Shapley values of all agents. Moreover, it is clear that the
running time of our algorithm is polynomial in n, r, and maxj log |Vj |.

Remark 3.10 A similar algorithm can also be used to compute the Banzhaf power share of each player as
long as the value of each coalition is given by a single rule based on a read-once Boolean formula. For any agent
i and any k = 0, . . . , n, our algorithm computes the number of coalitions C of size k such that adding i to C
changes the value of the coalition. Therefore, if the formula F contains xi, we have

β(i) =
1

2n−1

n∑

k=0

Ak,i(F),

and if the formula F contains x̄i, we have

β(i) = − 1
2n−1

n∑

k=0

Bk,i(F).

However, as Banzhaf power shares do not satisfy the additivity axiom, our algorithm does not give a way to
directly compute the Banzhaf values in games that are described by MC-nets with two or more rules, even if these
rules are basic.

4 Network flow games
In this section, we show how to apply the techniques of Section 3 to computing Shapley values and Banzhaf
power shares in network flow games.

4.1 Previous Work
Network flow games have been studied in the game theory literature [11, 12], and, more recently, in the context
of multi-agent systems [6]. In this paper, we will use the model of [6], which views a network flow game as a
simple game, where agents correspond to edges in the network, and a coalition wins if it admits a flow of a given
size and loses otherwise. We will first define the network flow problem, and then introduce the respective game.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 13

Definition 4.1 A network N = (V,E, s, t, c) is given by a set of nodes V , a set of edges E ⊆ V × V , a
source s ∈ V , a sink t ∈ V , and a list of capacities c = {ce}e∈E , ce > 0. We say that f = {fe}e∈E is a valid
flow of size k in N if

• (capacity constraints): fe ≤ ce for all e ∈ E.

• (flow preservation constraints): for any v ∈ V \ {s, t},
∑

(v′,v)∈E

f(v′,v) =
∑

(v,v′′)∈E

f(v,v′′).

• (size of the flow):
∑

(s,v)∈E

f(s,v) =
∑

(w,t)∈E

f(w,t) = k.

We are now ready to define the class of network flow games. (Note that we assume that all capacities are
integer.)

Definition 4.2 A network flow game is given by a network N = (V,E, s, t, c) and a target flow value K.
Each edge e ∈ E is controlled by a different agent; therefore, we identify the set of agents with the set of edges.
A coalition E′ ⊆ E is winning if the network N ′ = (V,E′, s, t, c′), where c′ = {ce}e∈E′ , admits a flow of size
K from s to t, and is losing otherwise.

Connectivity games are a special class of network flow games that satisfy K = 1 and ce = 1 for any e ∈ E. In
other words, in a connectivity game, a coalition is winning if it contains a path from s to t, and is losing otherwise.

Value division schemes for network flow games were first studied by Bachrach and Rosenschein [6]. Paper [6]
shows that for general networks, i.e., ones where there is no restrictions on the structure of the underlying network
N , and the capacities and the target flow value are integer numbers given in binary, computing Banzhaf shares
of all players is #P -hard. On the positive side, they provide a polynomial-time algorithm for computing the
Banzhaf shares in the special case of connectivity games on bounded-layer networks (for the definition of a
bounded-layer network, see [6]).

4.2 Flow Games on Series-Parallel Networks and MC-nets
In this section, we extend the results of [6] by providing a polynomial-time algorithm for power indices in a
widely studied class of networks, namely, series-parallel networks. This is a class of networks with a clear
hierarchical structure that enables us to use ideas from the previous section. Our algorithm can be used to compute
both Shapley and Banzhaf values. Moreover, unlike the algorithm of [6], it is not restricted to connectivity
games, but can be applied for an arbitrary target flow value K. However, the running time of our algorithm
is exponential in K. Therefore, our algorithm for general network flow games on series-parallel graphs is a
pseudopolynomial algorithm, i.e., an algorithm whose running time is polynomial if all input values (i.e., the
edge capacities and the target flow value) are given in unary. Alternatively, it can be said to run in polynomial
time if all edge capacities and the target flow value are polynomially bounded, which is a realistic scenario in
many applications. In Section 4.3, we will see that this is essentially the best we can do, as even for series-
parallel networks the problem of computing the Shapley value is NP-hard and is therefore unlikely to have a
polynomial-time algorithm.

We start by formally defining series-parallel networks.
Definition 4.3 A series-parallel network (SPN) is a network N = (V,E, s, t, c), such that one of the follow-

ing conditions holds:

Base case: A single edge (s, t), i.e., a network of the form

({s, t}, {(s, t)}, s, t, c(s,t))

is an SPN.
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14 Elkind, Goldberg, Goldberg, and Wooldridge: Marginal Contribution Networks

Series: Let N 1 = (V 1, E1, s1, t1, c1) and N 2 = (V 2, E2, s2, t2, c2) be two SPNs such that V 1 ∩ V 2 = ∅.
Set V = V 1 ∪ V 2, E = E1 ∪ E2, merge t1 with s2, and set c = c1 ∪ c2. Then

(V,E, s = s1, t = t2, c)

is an SPN.

Parallel: Let N 1 = (V 1, E1, s1, t1, c1) and N 2 = (V 2, E2, s2, t2, c2) be two SPNs such that V 1∩V 2 = ∅.
Set V = V 1 ∪ V 2, E = E1 ∪ E2, merge s1 with s2 and t1 with t2, and set c = c1 ∪ c2. Then

(V,E, s = s1 = s2, t = t1 = t2, c)

is an SPN.

We will now show that even though network flow games and marginal contribution nets appear to be quite
different, we can re-use the algorithm of the previous section to compute the power indices in the connectivity
game on a series-parallel network. To do so, we will now establish a connection between series-parallel networks
and read-once Boolean formulas. For connectivity games we have ce = 1 for all e ∈ E, so in this reduction we
omit the list of capacities from the description of a network.

Given a series-parallel network N = (V,E, s, t), E = {e1, . . . , en}, we will recursively construct a corre-
sponding read-once Boolean formula FN , XF = {x1, . . . , xn} as follows. If N consists of a single edge ei, set
FN = xi. If N has been obtained by connecting two networks N1 and N2 in parallel, set FN = FN1 ∨ FN2 .
Finally, if N has been obtained by connecting two networks N1 and N2 in series, set FN = FN1 ∧ FN2 .

It is easy to see that the resulting formula is read-once, and this transformation can be performed in polynomial
time. Moreover, S = {ei1 , . . . , eit} is a winning coalition in a connectivity game on the network N if and only
if S′ = {xi1 , . . . , xit} is a winning coalition in the marginal contribution net described by the rule FN → 1.
Consequently, the Shapley value of any player ei in the original game is the same as the Shapley value of its
counterpart xi in the new game. The same is true for the Banzhaf power shares. Consequently, we have the
following theorem.

Theorem 4.4 There exists a polynomial-time algorithm to compute Shapley values and Banzhaf power shares
in connectivity games on series-parallel graphs.

To generalise this result to network flow games, we need to modify the algorithm of Section 3 to take into
account the size of the flow.

Theorem 4.5 There is an algorithm that, given a series-parallel network N = (V,E, s, t, c), ci ∈ Z for
i ∈ E, |E| = n, and a target flow value K, computes the Shapley values of all players in the game (N , K), and
runs in time polynomial in n,

∑
e∈E ce, and K.

P r o o f. Given a network N = (V,E, s, t, c), let f(N ) denote the size of the maximum flow in N . It is
well-known that f(N ) can be computed in time polynomial in n and log

∑
e∈E ce. Set C =

∑
e∈E ce; clearly,

f(N ) ≤ C. For any network N = (V,E, s, t, c) and any S ⊆ E, set NS = (V, S, s, t, {ce}e∈S). For all
k = 0, . . . , n, e ∈ E, 0 ≤ X < Y ≤ C, let Ak,e,X,Y (N ) be the number of sets S ⊆ E of size k such that e *∈ S
and f(NS) = X , f(NS∪{e}) = Y . Also, let Tk,X be the number of sets S ⊆ E of size k such that f(NS) = X .

Given the values Ak,e,X,Y (N ) for k = 0, . . . , n, X, Y = 0, . . . , C, it is easy to compute the Shapley value of
the agent e. Indeed, for each coalition S counted in Ak,e,X,Y (N ) such that X < K ≤ Y , agent e contributes 1
to the value of the permutation where he appears directly after the members of S. Hence, we have

φ(N ,K)(e) =
1
n!

n∑

k=0

∑

X<K
Y≥K

k!(n− k − 1)!Ak,e,X,Y (N ).

It remains to show how to compute Ak,e,X,Y (N ) for all k = 0, . . . , n, e ∈ E, 0 ≤ X < Y ≤ C. This is done
recursively, by simultaneously computing Ak,e,X,Y and Tk,X for subnetworks of the original network N .

If N is a single edge e with capacity ce, then we have Ak,e,X,Y (N ) = 1 if k = 0, X = 0 and Y = ce;
otherwise, Ak,e,X,Y (N ) = 0. Also, Tk,X(N ) = 1 if k = 0 and X = 0, or k = 1 and X = ce, and Tk,X(N ) = 0
otherwise.
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Now, suppose that the network N is obtained by connecting two networks N 1 = (V 1, E1, s1, t1, c1) and
N 2 = (V 2, E2, s2, t2, c2) in parallel. For any S ⊆ E, f(NS) = X if and only if for some X ′ ≤ X we have
f(N 2

S∩E2) = X ′ and f(N 1
S∩E1) = X −X ′. Hence, if e ∈ E1, we have

Ak,e,X,Y (N ) =
k∑

k′=0

X∑

X′=0

Ak−k′,e,X−X′,Y−X′(N1)Tk′,X′(N2),

and if e ∈ E2, we have

Ak,e,X,Y (N ) =
k∑

k′=0

X∑

X′=0

Ak−k′,e,X−X′,Y−X′(N2)Tk′,X′(N1).

Observe that if X < Y , then we have X −X ′ < Y −X ′, so the quantity Ak−k′,e,X−X′,Y−X′ is well-defined.
Also, we have

Tk,X(N ) =
k∑

k′=0

X∑

X′=0

Tk′,X′(N1)Tk−k′,X−X′(N2).

Finally, suppose that N is obtained by connecting two networks N 1 = (V 1, E1, s1, t1, c1) and N 2 =
(V 2, E2, s2, t2, c2) in series. Fix an edge e ∈ E1 and consider a set S ⊆ E \ {e}. Suppose that f(NS) = X ,
f(NS∪{e}) = Y , X ≤ Y . This can happen in two cases: either (i) f(N 1

S∩E1) = X , f(N 1
S∪{e}∩E1) = Y and

f(N 2
S∩E2) ≥ Y , or (ii) f(N 1

S∩E1) = X , f(N 1
S∪{e}∩E1) = Y ′ > Y and f(N 2

S∩E2) = Y .
Consequently, if e ∈ E1, we have

Ak,e,X,Y (N ) =
k∑

k′=0

C∑

Z=Y

Ak′,e,X,Y (N1)Tk−k′,Z(N2) +
k∑

k′=0

C∑

Y ′=Y +1

Ak′,e,X,Y ′(N1)Tk−k′,Y (N2),

and if e ∈ E2, we have

Ak,e,X,Y (N ) =
k∑

k′=0

C∑

Z=Y

Ak′,e,X,Y (N2)Tk−k′,Z(N1) +
k∑

k′=0

C∑

Y ′=Y +1

Ak′,e,X,Y ′(N2)Tk−k′,Y (N1).

Also, we have

Tk,X(N ) =
k∑

k′=0

C∑

X′=X

[Tk′,X(N1)Tk−k′,X′(N2)+ Tk′,X(N2)Tk−k′,X′(N1)].

This completes the description of the procedure for computing Ak,e,X,Y (N ), and hence the proof.

Remark 4.6 Just as in the previous section, once we have computed the values Ak,e,X,Y (N ), we can use
them to determine the Banzhaf power shares of all players in time polynomial in K, n, and

∑
i∈E ci.

4.3 Hardness Results for Large Capacities
The running time of the algorithm described in the previous subsection is polynomial in |E|,

∑
e∈E{ce} and K

rather than log
∑

e∈E{ce} and log K, i.e., it is exponential in the size of the input. This leaves open the question
of designing a polynomial-time algorithm for computing the Shapley value in network flow games on series-
parallel graphs with unrestricted capacities and target flow values. While [6] shows that this problem is #P-hard
for general graphs, no similar result was known for our setting. In this section, we answer this question. Namely,
we show that for series-parallel graphs where the edge capacities and the target flow value are given in binary,
checking whether a player is not a dummy (and hence whether his Shapley value and Banzhaf power share are
non-zero) is NP-hard.

Our reduction is from PARTITION, which is a well-known NP-complete problem.
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Definition 4.7 An instance of PARTITION is given by a set of n integer weights W = {w1, . . . , wn}. It is
a “yes”-instance if it is possible to partition W into two subsets W1 ⊆ W , W2 ⊆ W so that W1 ∩ W2 = ∅,
W1 ∪W2 = W , and the sum of the weights in each subset is equal:

∑
wi∈W1

wi =
∑

wi∈W2
wi. If there is no

such partition, it is a “no”-instance.
Theorem 4.8 Given a network flow game G = (N , K) such that N = (V,E, s, t, c) is a series-parallel

network, and an agent e ∈ E, it is NP-hard to decide whether e is not a dummy player.

P r o o f. Given an instance W = {w1, . . . , wn} of PARTITION, we construct a network game as follows. We
set V = {s, v1, . . . , vn, vn+1, t}. There are edges in E from s to each vi, i = 1, . . . , n + 1, and from each vi,
i = 1, . . . , n + 1, to t. The capacities are chosen as follows. Let Cmax =

∑
i wi. Let the capacity of the edge

(s, vi) be 2wi for i = 1, . . . , n, and let the capacity of the edge (vi, t) be 2Cmax for i = 1, . . . , n + 1. Finally, let
the capacity of the edge (s, vn+1) be 1. Set the target flow value to be

∑
i wi + 1. It is easy to see that the agent

that owns the edge (s, vn+1) is a dummy if and only if the original instance of PARTITION is a “no”-instance.

5 Conclusions
We have presented read-once MC-nets, which retain the attractive computational properties of basic MC-nets
while being exponentially more compact in some cases. We have also demonstrated how the algorithmic ideas
developed in the context of read-once MC-nets can be applied to other domains—in particular, network flow
games on series-parallel networks.

Our work is related to a large body of current work on the computational aspects of cooperative games—see,
e.g., [1, 9, 2, 6, 13, 14, 4]. Work in this area is primarily focused around three interrelated issues. First is the
issue of succinctly representing coalitional games; in particular, constructing representations for the characteristic
functions of cooperative games that require space at most polynomial in the number of agents in the system. Sec-
ond is the issue of efficiently computing solution concepts for cooperative games; there is some tension between
on the one hand the desire for compact representations and on the other, computational tractability. Finally,
researchers have considered interpretations of cooperative games in computational settings, e.g., interpreting
coalitional games as the ability to ensure a particular network flow.

Many issues suggest themselves for further study. Most obviously, one might study other constraints on the
logical construction of MC-net rules which retain tractability while yielding further compactness. Results in
the area of Boolean function complexity and representation will perhaps be of value here. Another interesting
question is whether we need the full power of arbitrary Boolean connectives to achieve exponential savings over
basic MC-nets, or using ∧, ∨ and ¬ would suffice for this purpose. Indeed, Example 1 shows that read-once
MC-nets that use ∧, ∨ and ¬ only can be exponentially more succinct than basic MC-nets as long as we do not
allow MC-nets with negative right-hand sides; we would like to know if this is still the case if negative right-hand
sides are allowed. Also, one might investigate the extent to which our techniques can be applied to other classes
of coalitional games, beyond network flow games.

Acknowledgements: This research was in part supported by the EPSRC under the grant GR/T10671/01 and by
ESRC under the grant ES/F035845/1.

References
[1] X. Deng and C. H. Papadimitriou, On the complexity of cooperative solution concepts, Mathematics of Operations

Research 19(2), 257–266 (1994).
[2] S. Ieong and Y. Shoham, Marginal contribution nets: A compact representation scheme for coalitional games, in:

Proceedings of the Sixth ACM Conference on Electronic Commerce (EC’05), (Vancouver, Canada, 2005).
[3] E. Malizia, L. Palopoli, and F. Scarbello, Infeasibility certificates and the complexity of the core in coalitional games,

in: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), (Hyderabad,
India, 2007).

[4] E. Elkind and M. Wooldridge, Hedonic coalition nets, in: Proceedings of the Eighth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2009), (Budapest, Hungary, 2009).

[5] J. Uckelman, Y. Chevaleyre, U. Endriss, and J. Lang, Representing utility functions via weighted goals, Mathematical
Logic Quarterly (2009).

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 17

[6] Y. Bachrach and J. S. Rosenschein, Computing the Banzhaf power index in network flow games, in: Proceedings of
the Sixth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2007), (Honolulu,
Hawaii, 2007), pp. 335–341.

[7] M. J. Osborne and A. Rubinstein, A Course in Game Theory (The MIT Press: Cambridge, MA, 1994).
[8] J. F. Banzhaf III, Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Review 19(2), 317–343 (1965).
[9] V. Conitzer and T. Sandholm, Computing Shapley values, manipulating value division schemes, and checking core

membership in multi-issue domains, in: Proceedings of the Ninteenth National Conference on Artificial Intelligence
(AAAI-2004), (San Jose, CA, 2004), pp. 219–225.

[10] D. Angluin, L. Hellerstein, and M. Karpinski, Learning read-once formulas with queries, Journal of the ACM 40(1),
185–210 (1993).

[11] E. Kalai and E. Zemel, On totally balanced games and games of flow, Discussion Paper 413, Northwestern University,
Center for Mathematical Studies in Economics and Management Science, January 1980.

[12] E. Kalai and E. Zemel, Generalized network problems yielding totally balanced games, Operations Research
30(September), 998–1008 (1982).

[13] E. Elkind, L. Goldberg, P. Goldberg, and M. Wooldridge, Computational complexity of weighted threshold games,
in: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI-2007), (Vancouver, British
Columbia, Canada, 2007).

[14] P. E. Dunne, S. Kraus, W. van der Hoek, and M. Wooldridge, Cooperative boolean games, in: Proceedings of the
Seventh International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS-2008), (Estoril,
Portugal, 2008).

Copyright line will be provided by the publisher



18 Elkind, Goldberg, Goldberg, and Wooldridge: Marginal Contribution Networks

A The procedure Sh(F)

Sh(F)
if F = xj then
for k = 0, . . . , n

if k = 1 then Tk = 1 else Tk = 0;
if k = 0 then Fk = 1 else Fk = 0;
for i = 1, . . . , n

if (i = j, k = 0) then Ak,i = 1 else Ak,i = 0;
Bk,i = 0;

if F = x̄j then
for k = 0, . . . , n

if k = 0 then Tk = 1 else Tk = 0;
if k = 1 then Fk = 1 else Fk = 0;
for i = 1, . . . , n

Ak,i = 0;
if (i = j, k = 0) then Bk,i = 1 else Bk,i = 0;

if F = F1 ∨ F2 then
[A1,B1,T1,F1] = Sh(F1); [A2,B2,T2,F2] = Sh(F2);
for k = 0, . . . , n

Tk =
∑k

s=0(T
1
s T 2

k−s + F 1
s T 2

k−s + T 1
s F 2

k−s); Fk =
∑k

s=0 F 1
s F 2

k−s
for i = 1, . . . , n
if xi does not appear in F then Ak,i = 0, Bk,i = 0
if xi appears in F1 then

Ak,i =
∑k

s=0 A1
s,iF

2
k−s; Bk,i =

∑k
s=0 B1

s,iF
2
k−s;

if xi appears in F2 then
Ak,i =

∑k
s=0 A2

s,iF
1
k−s; Bk,i =

∑k
s=0 B2

s,iF
1
k−s;

if F = F1 ∧ F2 then
[A1,B1,T1,F1] = Sh(F1); [A2,B2,T2,F2] = Sh(F2);
for k = 0, . . . , n

Tk =
∑k

s=0 T 1
s T 2

k−s; Fk =
∑k

s=0(F
1
s F 2

k−s + F 1
s T 2

k−s + T 1
s F 2

k−s)
for i = 1, . . . , n

if xi does not appear in F then Ak,i = 0, Bk,i = 0
if xi appears in F1 then

Ak,i =
∑k

s=0 A1
s,iT

2
k−s; Bk,i =

∑k
s=0 B1

s,iT
2
k−s;

if xi appears in F2 then
Ak,i =

∑k
s=0 A2

s,iT
1
k−s; Bk,i =

∑k
s=0 B2

s,iT
1
k−s;

if F = F1 ⊕ F2 then
[A1,B1,T1,F1] = Sh(F1); [A2,B2,T2,F2] = Sh(F2);
for k = 0, . . . , n

Tk =
∑k

s=0(T
1
s F 2

k−s + F 1
s T 2

k−s); Fk =
∑k

s=0(F
1
s F 2

k−s + T 1
s T 2

k−s)
for i = 1, . . . , n

if xi does not appear in F then Ak,i = 0, Bk,i = 0
if xi appears in F1 then

Ak,i =
∑k

s=0(B
1
s,iT

2
k−s + A1

s,iF
2
k−s); Bk,i =

∑k
s=0(B

1
s,iF

2
k−s + A1

s,iT
2
k−s);

if xi appears in F2 then
Ak,i =

∑k
s=0(B

2
s,iT

1
k−s + A2

s,iF
1
k−s); Bk,i =

∑k
s=0(B

2
s,iF

1
k−s + A2

s,iT
1
k−s);

return [A,B,T,F];

Copyright line will be provided by the publisher


