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1 IntroductionThe problem of evolutionary tree construction involves taking a given set ofspecies, and constructing a tree which describes the evolutionary history ofthat set of species. We would expect a pair of species to be close together inthe tree if they are closely related. Numerous variants of this general problemhave been studied, the variants arising from the di�ering kinds of informationthat may be assumed to be available concerning the species.In character-based phylogeny, the scenario is the following. A character c isa function from the species set S to some set Rc of states. For example, thecharacter vertebrate-invertebrate has two states, so we can choose Rc = f0; 1gand we can de�ne c so that c(s) = 0 for every species s that is a vertebrate andc(s) = 1 for every species s that is an invertebrate. As another example, wecould de�ne a character c based on average life-span. In this case Rc might be aset of ranges such as Rc = f0{10 years; 10{20 years; 20{60 years; more than60 yearsg. Then the function c could be de�ned to map each species s to therange containing its average life-span. We can think of a sequence of k char-acters c1; : : : ; ck as mapping each species s in the species set to a vector(c1(s); : : : ; ck(s)) in Rc1 � � � � � Rck . The species sets that we will considerwill have the property that for any two distinct species, s and s0, that are ina species set, (c1(s); : : : ; ck(s)) 6= (c1(s0); : : : ; ck(s0)). Thus, we will be able toidentify each species s with a vector (c1(s); : : : ; ck(s)) in Rc1 � � � � �Rck . Fur-thermore, we will think of the set Rc1 � � � � �Rck as being the set containingall possible species, including those in S.The inputs to the phylogeny construction problem are the species set S (wewill use n to denote the size of S) and a sequence of characters, c1; : : : ; ck.We will let rcj denote jRcj j, and r denote maxj rcj . A phylogenetic tree for theinput is a node-labeled tree in which every node of the tree is labeled with avector in Rc1 � � � � � Rck , and each species in S is the label of some node ofthe tree 4 . Thus, each character cj can be extended to a function from the set? Full version of a paper presented at the 6th (1995) annual symposium on Com-binatorial Pattern Matching1This work was performed at Sandia National Laboratories supported by the U.S.Department of Energy under contract DE-AC04-76AL85000.2Part of this work was supported by the ESPRIT Basic Research Action Pro-gramme of the EC under contract 7141 (project ALCOM-IT).3This work supported by a National Science Foundation Young Investigator Awardunder contract CCR-9457800, and by the U.S. Department of Energy under contractDE-AC04-76AL85000.4A phylogenetic tree for the input S; c1; : : : ; ck is sometimes de�ned to be a node-labeled tree in which every node of the tree is labeled with a vector in Rc1�� � ��Rck ,and each species in S is the label of some leaf of the tree. It is clear that every2



of vertices of T to Rcj .A species is naturally described using a string of length k over the alphabetf1; : : : ; rg. A phylogeny is a way of expressing similarity amongst a set ofstrings rather than expressing similarity between pairs of strings. Subsets ofstrings with strong similarities (as measured by matches in many locations)are located closer to each other in the tree than those that are more disparate.The output tree is the pattern of similarity amongst the entire set of inputstrings.Classically, the quality of a phylogenetic tree is evaluated using optimizationcriteria. When the data are believed to be generated under a stochastic model,then the likelihood of the tree is calculated, and the tree with the highestlikelihood score is considered optimal.Other popular criteria do not explicitly presume a statistical model for thedata. In parsimony, a tree is sought on which the total amount of evolution-ary change is minimized. This can be calculated in several ways. One way isto count the total number of changes indicated over all the edges, where theevolutionary change indicated by an edge is quanti�ed by the number of char-acters which change state over that edge. Another way to calculate this is tosum over all the characters the total number of times the character changes.The tree with the minimum total number of changes is called the maximumparsimony tree.Although the parsimony criterion is very popular, there are data for which theevolutionary process produces characters which are very unlikely to have verymany changes, or else few returns to states which have previously appearedon the tree. An example of such a character is the morphological charactervertebrate-invertebrate; any proposed tree for this character in which the ver-tebrates and invertebrates are not clearly separated by a single edge would berejected. Correspondingly, multi-state characters of this type would have eachcharacter state occupying a single connected subset of the tree; such char-acters are said to be compatible or convex on the tree. When working withdata of this type, the parsimony criterion is inadequate because it does notexpress the constraint indicated by the characters. Instead, the compatibilitycriterion may be used; in this case, the tree on which the maximum numberof characters are compatible is sought.Thus, parsimony and compatibility each targets a di�erent type of charac-tree satisfying this alternative de�nition also satis�es our de�nition above. Thealternative de�nition is equivalent to ours in the sense that we can convert a tree Tsatisfying our de�nition into a tree T 0 satisfying the alternative de�nition by addingextra leaves. Under all reasonable measures of �tness for phylogenetic trees, T andT 0 will have the same measure of �tness.3



ter data and handle deviations from the assumptions di�erently. Parsimonytargets the case where characters evolve slowly but not necessarily so as toproduce compatible characters, and penalizes for each extra character statechange without regard to how the extra changes are distributed. Compatibil-ity targets the case where characters are presumed to evolve in such a wayas to produce compatible characters, and penalizes for each character thatis not compatible on the tree. Both criteria are used in practice for di�er-ent types of datasets. Both criteria, compatibility and parsimony, result inNP-hard optimization problems[3,3]. An ideal tree is one in which all charac-ters are compatible (i.e., all characters are convex on the tree). Such a treeis optimal under parsimony and compatibility criteria and is called a perfectphylogeny. The question of whether a perfect phylogeny exists for a given inputis NP-Complete[3,3].In this paper, we propose an alternative optimization criterion for evaluatingphylogenetic trees which combine the good aspects of both parsimony andcompatibility. Speci�cally, we allow the characters to be of varying types;thus, some can evolve quickly, and can potentially have many extra characterstate changes, while others may be compatible on the evolutionary tree, andothers can fall between the two extremes. Our model presumes that for eachcharacter c and state i, we have a bound `c;i, the number of times each statei of character c arises in the tree. Given these bounds, we would seek a tree Tsatisfying the constraints given by the bounds, if possible.We will say that a phylogenetic tree T for an input consisting of a speciesset S and a sequence of characters c1; : : : ; ck is an `-phylogeny if, for everycharacter cj and every state i 2 Rcj , the set of vertices c�1j (i) form at most` connected components in T . (A 1-phylogeny is the same as a perfect phy-logeny). The `-phylogeny problem is the problem of determining whether aninput has an `-phylogeny. The phylogenetic number of an input is the min-imum ` such that the input has an `-phylogeny. The phylogenetic numberproblem is the problem of determining the phylogenetic number of an input.The `-phylogeny problem and the phylogenetic number problem both have�xed-topology versions which are de�ned as follows. The input is a speciesset S, a sequence of characters c1; : : : ; ck, and a tree T in which internal nodesare unlabeled and each leaf is labeled with a species s 2 S. Each species s 2 Sis the label of exactly one leaf of T . A phylogenetic tree for the input is formedby taking T and labeling the internal nodes of T with vectors in Rc1�� � ��Rck .The �xed-topology `-phylogeny problem is the problem of determining whetherthe input has an `-phylogeny. The �xed-topology phylogenetic number prob-lem is de�ned analogously.The `-phylogeny problem and the phylogenetic number problem also haverestricted versions in which new ancestral species may not be added, as in[3].4



The restricted versions are de�ned as follows. The input is a species set S anda sequence of characters c1; : : : ; ck. A restricted phylogenetic tree for the inputis a node-labeled tree in which every node of the tree is labeled with a vectorin S, and each species in S is the label of some node of the tree. The restricted`-phylogeny problem is the problem of determining whether the input has arestricted `-phylogeny. The restricted phylogenetic number problem is de�nedanalogously.The `-phylogeny problem can be generalized as follows. Fix positive inte-gers r; `1; : : : ; `r. Suppose that S; c1; : : : ; ck is a phylogeny input such thatmaxj rcj � r. An (`1; : : : ; `r)-phylogeny for an input is de�ned to be a phy-logenetic tree for the input such that, for each character cj and each inte-ger i � jRcj j, the set of vertices that are mapped to the ith state in Rcjby cj forms at most `i connected components in T . The (`1; : : : ; `r)-phylogenyproblem is the problem of determining whether an input has an (`1; : : : ; `r)-phylogeny. A generalized version of the restricted `-phylogeny problem is de-�ned analogously.1.1 Summary of Results and Outline of PaperThe 1-phylogeny problem is also known as the perfect phylogeny problem. Itwas shown to be NP-hard by Bodlaender, Fellows, Warnow, and (indepen-dently) Steel[3,3]. The hardness of 1-phylogeny implies that the phylogeneticnumber problem is NP-hard. In Section 2 of this paper we show that for any�xed ` > 1 the `-phylogeny problem is also NP-hard.Having shown that the `-phylogeny problem is NP-hard, we consider in Sec-tion 3 the �xed-topology `-phylogeny problem. It is known that the �xed-topology 1-phylogeny problem can be solved in polynomial time[3]. We showthat the �xed-topology 2-phylogeny problem can also be solved in polynomialtime and that the �xed-topology `-phylogeny problem is NP-hard for �xed` > 2. (We show that the �xed-topology `-phylogeny problem is NP-hard for�xed ` > 2 even when the input is guaranteed to have an `+1-phylogeny andthe degree of the topology is restricted to be at most 3.)In Section 4 we consider the restricted `-phylogeny problem. We show thatthere is a polynomial-time algorithm for the restricted 1-phylogeny problem,but the restricted `-phylogeny problem is NP-hard for �xed ` � 2.Although the 1-phylogeny problem is NP-hard, it can be solved in polynomialtime if the number, n, of species is �xed, or the number, k, of characters is�xed[3,3], or the quantity r = maxj rcj is �xed[3,3]. A full analysis of �xedparameter `-phylogeny problems is outside the scope of this paper. However,we observe that all of the phylogeny problems can be solved in polynomial5



time (by brute force) if n is �xed. In Section 5 we use interesting combinatorialtechniques to show that for k = 2 the phylogenetic number problem can besolved in O(n2) time. The complexity of the `-phylogeny problem remainsopen for �xed ` > 1 and �xed k > 2. The di�culty of �xed-topology phylogenyproblems does not change if k is �xed. In Section 6 we show that the �xed-topology phylogenetic number problem can be solved in polynomial time for�xed r. On a related note, we show that if r is �xed, there is a polynomial-delay algorithm for listing �xed-topology `-phylogenies. We also show that for�xed r � 2 and �xed ` � 3 the restricted `-phylogeny problem is NP-hard.(This result follows from a more general result. Namely, we show that therestricted (`1; `2)-phylogeny problem is NP-hard for �xed `1 � 2 and `2 � 2as long as one of `1; `2 is greater than 2.)Finally, in section 7 we o�er some concluding remarks and present some openproblems.1.2 Preliminary FactsThe following fact is used in some of the proofs and in the restricted 1-phylogeny algorithm.Fact 1 If an input S, c1; : : : ; ck has an `-phylogeny then it has an `-phylogenyin which:(i) Each leaf has a label from S.(ii) Each species is the label of at most one node.(iii) Every node whose label is not in S has degree at least 3.(iv) There are at most max(0; n� 2) nodes with labels that are not in S.Proof. It is easy to see that conditions (i{iii) can be satis�ed. (One can con-vert an `-phylogeny into one that satis�es conditions (i{iii) by removing leaveswith labels that are not in S, combining branches of the tree to accomplishcondition (ii), and then \splicing out" the appropriate degree 2 nodes to ac-complish condition (iii).) To prove that condition (iv) can also be satis�ed,suppose that T is an `-phylogeny for the input that satis�es conditions (i{iii)and contains at least one node, w, with a label that is not in S. Let T 0 be thetree obtained from T by splicing out any nodes of degree 2. (Condition (iii)guarantees that no node with a label outside of S is spliced out in this pro-cess.) Consider T 0 to be rooted at w. We can add one or more new internalnodes to T 0 to obtain a complete binary tree T 00 which is rooted at w and6



has the same leaves as T 0 5 . Conditions (i) and (ii) imply that T , and there-fore T 0 and T 00, have at most n leaves. Since T 00 has at most n leaves, it hasat most n� 1 internal nodes. Therefore, T 0 has at most n� 2 internal nodes,and T has at most n� 2 nodes with labels that are not in S. 2Fact 1 implies that if an input has an `-phylogeny then it has a polynomial-sized `-phylogeny.2 The Hardness of `-PhylogenyIn this section we show that for any �xed ` > 1, the `-phylogeny problem isNP-hard. Our reduction is from the 1-phylogeny problem, which was shownto be NP-hard in [3,3].We de�ne the weight of an edge (v1; v2) in a phylogeny to be the number ofcharacters cj such that cj(v1) 6= cj(v2). That is, the weight of (v1; v2) is thenumber of characters on which the species labeling v1 and v2 disagree, ie. thehamming distance between their vectors of character values. We de�ne theweight of a phylogeny to be the sum of the weights of its edges. We start withthe following observation.Remark 2 Let S; c1; : : : ; ck be any input to the `-phylogeny problem and let rdenote maxj rcj . Any `-phylogeny for this input has weight at most k(`r � 1).We will use the following lemma (in which species are referred to by stringsover their character values).Lemma 3 For every integer ` there is an input I` = S; c1; : : : ; c2` in whichjSj = 2`3 � 2` + 1 and Rcj = f0; : : : ; `� 1g for 1 � j � 2` such that(i) For every state i in the range 0 � i < `, the species i2` is in S.(ii) I` has an `-phylogeny(iii) In any `-phylogeny for I` the subgraph induced by all of the nodes withany given label is connected.(iv) In any `-phylogeny for I` all of the nodes are labeled by species in S. (Thatis, no new species are introduced.)5To see how to construct T 00, let the \level" of a vertex denote its distance from theroot. Start with level 0 of T 0 and proceed through the levels of the tree in increasingorder. Consider each vertex v on each level. If v has children x1; : : : ; xj with j > 2remove the edges (v; x2); : : : ; (v; xj) and add a new node y which is a child of v andthe parent of nodes x2; : : : ; xj . Note that at least one new internal node is added inthe process, as w has at least three children in T 0.7



(v) In any `-phylogeny for I` the path between the species i2` and j2` for i 6= jpasses through at least 2` � 1 distinct species.Example: The Input I3The species set S of input I3 consists of 49 species. The values of the sixcharacters on these species are de�ned as in �gure 1:
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Fig. 1. The Input I3The Input I3 has the 3-phylogeny shown in �gure 1. By Remark 2 any 3-phylogeny for I3 has weight at most 48. However, 48 edges with positive weightare needed just to hook up the 49 species in S into a tree. We conclude thatany 3-phylogeny for I3 consists of 48 edges with weight 1 plus possibly someedges with weight 0. Thus, the subgraph induced by all of the nodes with anygiven label forms a single connected component. Furthermore, no new speciesare introduced. Finally, since i6 and j6 di�er in 6 characters (for i 6= j), anypath between them in any 3-phylogeny for I3 passes through at least 5 distinctspecies.Construction of I` = S; c1; : : : ; c2`:For 1 � j � 2` we set Rcj = f0; : : : ; ` � 1g. For each state i in the range0 � i < ` we put the species i2` into S. The other species in S will be thespecies in the following phylogeny:For each state i in the range 0 � i < ` we will choose a unique parti-tion Pi of the 2` characters into two sets of size `. (In the construction of I38



above we used P0 = f0; 1; 2g; f3; 4; 5g; P1 = f0; 2; 4g; f1; 3; 5g; and P2 =f0; 1; 4g; f2; 3; 5g.)We will use each of the parts of the partition Pi to form a \row" of specieswhich will be connected to the species i2`. To construct each row, consider theordered list ci1; : : : ; ci` consisting of the characters in the appropriate part ofthe partition. From the species i2` form a new species by changing the state ofcharacter ci1 to (i+1) mod `. Then form a new species by changing the stateof character ci2 to (i+1) mod `. Continue on until the state of character ci` ischanged to (i+1) mod `. Then change the state of character ci1 to (i+2) mod `and continue on in this manner until �nally the state of character ci` is changedto (i+ (` � 1)) mod `.Finally, we will add species to connect the species i2` to the species (i+ 1)2`in the vertical spine (for i in the range 0 � i < ` � 1). Let c� be the secondcharacter in the �rst part of the partition corresponding to i and construct anew species from i2` by changing the state of character c� to i+1. Next, let c0�be the �rst character such that c� and c0� are in di�erent parts of i's partitionand c� and c0� are in di�erent parts of (i + 1)'s partition. Construct a newspecies by changing the state of character c0� to i+ 1. Now, construct 2` � 3more species by considering each remaining character in turn and changing itfrom state i to state i+ 1.Proof of Lemma 3. By construction, S contains the species i2` for everystate i in the range 0 � i < `. To see that the phylogeny constructed above isindeed an `-phylogeny for I` note that for each state i and for each state j 6= ia character c� only has state i in one of the two rows connected to j2` and thespecies with c� in state i are connected in this row. Furthermore, there is asingle connected component with character c� in state i in the rows connectedto i2` and this connected component contains all species on the vertical spinewith character c� in state i. We now wish to show that all of the speciesintroduced in the construction are distinct. Suppose that instead two species s1and s2 have identical labels. Note that, by construction, s1 and s2 could notbe of the form i2`. Furthermore, they could not be on the same horizontal rowand they could not both be on the vertical spine. There are three cases toconsider:(i) s1 and s2 are on di�erent rows, both of which are attached to i2`.In this case s1 has state i for all of the characters in one part of thepartition Pi and s2 has state i for all of the characters in the other partof the partition Pi so it must be the case that s1 = s2 = i2` which is acontradiction.(ii) s1 is on a horizontal row connected to i2` and s2 is on a horizontal rowconnected to j2` for some j 6= i. 9



In this case s1 has state i for all of the characters in some part of thepartition Pi so s2 must have character i for all of the characters in thatpart of the partition Pi and character j on all other characters. But thenthe partition Pj is the same as the partition Pi, which is not true byconstruction.(iii) s1 is on the vertical spine between i2` and (i+ 1)2` and s2 is on a horizontalrow.By construction s2 must be on a row attached to i or on a row attachedto i + 1. However, the choice of c� and c0� ensures that s2 cannot be oneither of these rows.Now that we know that the species are distinct, we count them. There are `species of the form i2`. Each of the 2` horizontal rows has `(` � 1) species.Finally, there are (` � 1)(2` � 1) additional species on the vertical spine. Weconclude that S has 2`3�2`+1 distinct species. By Remark 2, any `-phylogenyfor I` has weight at most 2`(`2 � 1) = 2`3 � 2`. However, 2`3 � 2` edges withpositive weight are needed just to hook up the 2`3� 2`+1 species in S into atree. We conclude that any `-phylogeny for I` consists of 2`3 � 2` edges withweight 1 plus possibly some edges with weight 0. Thus, the subgraph inducedby all of the nodes with any given label forms a single connected component.Furthermore, no new species are introduced. Finally, since i2` and j2` di�er in2` characters, any path between them in any `-phylogeny for I` passes throughat least 2` � 1 distinct species. 2We will use Lemma 3 to prove the following theoremTheorem 4 For any �xed ` > 1 the `-phylogeny problem is NP-hard.Proof. The reduction is from the 1-phylogeny problem. Let S, c1; : : : ; ck bean input to the 1-phylogeny problem such that Rcj � f0; : : : ; r � 1g for 1 �j � k. Let S0; c01; : : : ; c02` be an input to the `-phylogeny problem satisfyingthe conditions in Lemma 3. Let S� = f srk j s 2 S0 g. For each i in therange 0 � i < ` let Si = f i2`y j y 2 S g. Let S00 = S� [ S0�i<` Si. Let Ibe the input to the `-phylogeny problem with species set S00 and charactersc01; : : : ; c02`; c1; : : : ; ck. (Note that in input I the range of cj has been extendedfrom Rcj to Rcj [ frg.)! Suppose that T is a 1-phylogeny for S; c1; : : : ; ck. For each i in the range0 � i < ` let Ti be a copy of T in which each label y has been changed to i2`y.(Ti is a 1-phylogeny for Si; c01; : : : ; c02`; c1; : : : ; ck.) Let T � be an `-phylogenyfor S�; c01; : : : ; c02`; c1; : : : ; ck. (Part (ii) of Lemma 3 guarantees that T � exists.)Now for each i in the range 0 � i < ` connect an arbitrary node in Ti tothe node i2`rk in T �. (The construction, together with Part (i) of Lemma 310



guarantees that there is a vertex of T � labeled i2`rk.) The resulting tree is an`-phylogeny for I. Suppose that T is an `-phylogeny for I. If we restrict our attention tocharacters c01; : : : ; c02`, we still have an `-phylogeny. Therefore, by Part (iii)of Lemma 3, the subgraph induced by all of the species which have someparticular set of states for characters c01; : : : ; c02` is connected. We will use thenotation Ti to refer to the induced subtree of T containing those species thathave state i for characters c01; : : : ; c02`.We claim that for any j in the range 1 � j � k any path in T between a nodeti 2 Ti and a node th 2 Th (for h 6= i) contains some species s with cj(s) = r.Clearly, this claim implies that T0 is a 1-phylogeny for S0; c01; : : : ; c02`; c1; : : : ; ck.Hence, S; c1; : : : ; ck has a 1-phylogeny.To prove the claim note that by Part (v) of Lemma 3 the path between Tiand Th passes through at least 2`�1 nodes v1; : : : ; v2`�1; no two of which agreeon all of characters c01; : : : ; c02`. By construction and by Part (i) of Lemma 3, S00contains the species i2`rk and by Part (iii) of Lemma 3 it is part of Ti. Similarly,S00 contains the species h2`rk and it is part of Th. Furthermore, (by constructionand by Part (iv) of Lemma 3), for each node vm, S00 contains a species v0m thatagrees with vm on characters c01; : : : ; c02` and has characters c1; : : : ; ck in state r.By Part (iii) of Lemma 3 v0m is in the connected subgraph of T induced byspecies which agree with vm on characters c01; : : : ; c02`. Now suppose that noneof v1; : : : ; v2`�1 has character cj in state r. Then the sub-graph of T induced bythose nodes that have character cj in state r has 2`+1 connected components,which contradicts the fact that T is an `-phylogeny. 23 The Fixed-Topology `-Phylogeny ProblemIt is known that the �xed-topology 1-phylogeny problem can be solved inpolynomial time[3]. In Subsection 3.1, we show that the �xed-topology 2-phylogeny problem can also be solved in polynomial time. In Subsection 3.2we show that the �xed-topology `-phylogeny problem is NP-hard for �xed` > 2. (We show that the �xed-topology `-phylogeny problem is NP-hard for�xed ` > 2 even when the input is guaranteed to have an `+1-phylogeny andthe degree of the topology is restricted to be at most 3.)11



3.1 The Fixed-Topology 2-Phylogeny ProblemIn this subsection, we show that the �xed-topology 2-phylogeny problem canbe solved in polynomial time. The algorithm runs in time O(nrk) where n isthe number of species, r is the maximum number of states in any character,and k is the number of characters. If a 2-phylogeny exists, then our algorithmcomputes a labeling that achieves a 2-phylogeny.Since the topology is �xed, the characters are independent and can be handledone at a time. We will now show how to compute the labels for a singlecharacter in time O(nr), where in this case r is the number of states for thischaracter. The overall bound then follows.Although the input tree is unrooted, for this algorithm, we root this tree froman arbitrary internal node. The choice of root does not a�ect the existence ofa 2-phylogeny, but it may a�ect the labeling.Let T be the input tree with leaves labeled by states 1; 2; : : : ; r. Consider asingle state i and let Ti be the subtree of tree T consisting of all the leaveslabeled i and the unique set of paths connecting this set of leaves. For statei to have a single connected component in tree T , every node in Ti must belabeled i. For state i to have at most two connected components, every node intree Ti with degree greater than 2 must be labeled i (otherwise state i wouldbe split into at least 3 components). We call such nodes branch points of treeTi. The branch points and the leaves already labeled i are the forced points oftree Ti. At most one path of degree-2 nodes between two forced points can belabeled something other than i.We begin by computing Ti for i = 1; : : : ; r. Each branch point of Ti is labeledas such, each path between two forced points is given a unique label, and eachdegree-2 node in Ti is labeled with its path label. Note that the root of tree Tineed not be a branch point. If each node of tree T is given a length-r vector,then information for all r trees Ti can be stored in this vector. For example,node v could be a branch point for tree Ti (ith slot of the vector indicatesbranch point), on the lth path for tree Tj (the jth slot of the vector has thenumber l), and not in tree Th (the hth slot is null). We can compute all r treesin time O(nr) using depth-�rst search.The �rst phase of the algorithm (the forced phase) computes all forced labels.For each tree Ti, each branch point of Ti is labeled i and a pointer to thenode is placed into a queue. If at any time we try to label a node that isalready labeled with something else, then we stop and report that there is no2-phylogeny for this topology.Now all path con
icts have to be settled for the labeled nodes. We remove the12



�rst node from the queue. Suppose it is node v and it is labeled i. If this node isalso in path l of tree Tj for some j 6= i, then tree Tj must give up path l. Oncepath l is broken, then in order to achieve 2 connected components for statej, every other path in tree Tj must be labeled j. We traverse tree Tj, clearingpath l (setting slot j to null for all nodes on path l of tree Tj) and labelingall other nodes j. If we attempt to label a node that is already labeled, thenwe stop. There can be no 2-phylogeny. Otherwise, the newly-labeled nodes areadded to the queue. We do this for all paths that go through node v, thenclear path con
icts on all the other nodes in the queue. Because each node canbe labeled, enqueued, dequeued, and processed at most once, and each treecan be traversed at most once, this phase can be completed in time O(nr).The �nal phase completes the labeling of the tree. If we succeed in emptyingthe queue without encountering a fatal con
ict, it is still possible that somenodes remain unlabeled. We show that there is always a 2-phylogeny. Let treesTi and Tj be left undetermined by the forced phase of the algorithm. If theintersection of these two trees is empty, there is no con
ict between them.Otherwise, the intersection is connected 6 and contains exactly one path fromeach tree 7 . Furthermore, the root of one of the trees (possibly both) is in theintersection 8 . Suppose that the root of Ti is contained in Ti \ Tj. Then treeTi gives up the path through its root (if both roots are contained in Ti \ Tj,one of the trees chosen arbitrarily will give up the path through its root).By the structure of the intersection, this clears the con
ict between tree Tiand Tj. We can solve all con
icts between pairs of trees in a similar manner.Since each tree was not forced to give up a path in the forced phase of thealgorithm (otherwise it would have been fully determined then), it is free togive up one path in this phase. Each tree will give up at most one path,namely the one through its root. Therefore, all con
icts are resolved and wehave a 2-phylogeny. This phase of the algorithm can be implemented in O(nr)time by processing each remaining tree in order (determining whether it mustrelinquish the path through its root, and claiming all other paths).Thus we have shown how to compute the labelings of the internal nodes ofthe input tree T in time O(nr) per character for an overall time of O(nrk).Thus, we have proved the following theorem.Theorem 5 The �xed-topology 2-phylogeny problem can be solved in polyno-6 If two nodes v1 and v2 are both in Ti and both in Tj , then every node on theunique path in T between v1 and v2 must also be in both trees.7 If the intersection contained pieces of two paths from tree Ti, then it must containa branch point for tree Ti and therefore tree Tj would have been forced to relinquisha path and left completely determined by the forced phase.8Consider a node in the intersection. If its parent in T is in the intersection, moveup to it. Continue until some parent is no longer in the intersection. That node isthe root of at least one of Ti and Tj 13



mial time.3.2 The Fixed-Topology `-Phylogeny Problem for ` > 2In this subsection we prove the following theorem.Theorem 6 The �xed-topology `-phylogeny problem is NP-hard for �xed ` >2.Proof. The proof is by reduction from 3SAT. Let ` > 2 be �xed. Supposethat we are given an input to 3SAT. We will show how to construct a one-character input S; c; T to the �xed-topology `-phylogeny problem such thatthe phylogeny input has an `-phylogeny if and only if the input to 3SAT issatis�able.The species set S, the set Rc of states, and the character c are constructed asfollows. For each of the n variables, x, in the satis�ability input we havestates sx and sx and species s(x;1); : : : ; s(x;`+1) and s(x;1); : : : ; s(x;`+1) wherec(s(x;j)) = sx and c(s(x;j)) = sx. For each of the m clauses, C, in the satis�abil-ity input we have state sC and species s(C;1); : : : ; s(C;`+1) where c(s(C;j)) =sC . For the ith occurrence of the literal x in the satis�ability input, wehave state sxi and species s(xi;1); : : : ; s(xi;`+1) where c(s(xi;j)) = sxi. Simi-larly, for the ith occurance of the literal x in the satis�ability input, we havestate sxi and species s(xi;1); : : : ; s(xi;`+1) where c(s(xi;j)) = sxi. Let N denoten(2`� 3) +m(4`� 11). For each h in the range 1 � h < N we have a state s0hand species s0(h;1); : : : ; s0(h;`+1) where c(s0(h;j)) = s0h.We will show how to construct a tree T in which internal nodes are unlabeledand each leaf is labeled with a species in S. Each species in S will be the labelof exactly one leaf of T . To construct T we will �rst construct trees T1; : : : ; TN .Finally, we will hook Ti to Ti+1 for 1 � i < NWe start by showing how to hook tree Ti to tree Ti+1. Let ti be an internalnode in Ti of degree at most 2 and let ti+1 be an internal node in Ti+1 ofdegree at most 2 (it will be clear from the construction that such small-degreeinternal nodes exist in Ti and Ti+1). Connect ti and ti+1 with a chain of `+ 1new internal nodes. Finally, give each of the internal nodes in the chain aleaf and label the new leaves with the species s0(i;1); : : : ; s0(i;`+1). For example,if ` = 3 then connect ti and ti+1 as in �gure 2:14
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s s ss’ ’ ’ ’(i,1) (i,2) (i,3) (i,4)Fig. 2. Example for ` = 3Note that in any `-phylogeny for the input, at least one of the internal nodesin the chain will be labeled with a species s such that c(s) = s0i. Since wehave now used all `+1 species s with c(s) = s0i, neither Ti nor Ti+1 contains aleaf s such that c(s) = s0i. Therefore when Ti is hooked to Ti+1 as above, anyleaves `i 2 Ti and `i+1 2 Ti+1 with c(`i) = c(`i+1) are in di�erent connectedcomponents in the subgraph induced by c�1(c(`i)).We next show how to construct the trees T1; : : : ; TN . Trees T1; : : : ; TN�n�mwill each consist of a single internal node connected to a single leaf. In par-ticular, we will construct one such tree for each of the following species:for each variable x, species s(x;1); : : : ; s(x;`�2) and s(x;1); : : : ; s(x;`�2); for eachclause C, species s(C;1); : : : ; s(C;`�3); for the ith occurance of the literal x,species s(xi;1); : : : ; s(xi;`�3); for the ith occurance of the literal x, species s(xi;1);: : : ; s(xi;`�3).Trees TN�n�m+1; : : : ; TN�m will be used for truth-setting. For each variable xin the satis�ability input we will construct a tree as follows. Suppose thatthe literal x appears i times in the satis�ability input and that the literal xappears j times in the satis�ability input. Construct a tree consisting of achain of 2i+2j +6 internal nodes. Each internal node will have one leaf, andthe species at the leaves will be (in order): �rst, s(x;`�1); then, s(x1;`�2); s(x1;`�1);s(x2;`�2); s(x2;`�1); : : : ; s(xi;`�2); s(xi;`�1); then s(x;`); s(x;`�1); s(x;`+1); s(x;`); thens(x1;`�2); s(x1;`�1); : : : ; s(xj;`�2); s(xj;`�1); �nally, s(x;`+1). For example, if ` = 3,i = 1, and j = 2 construct a tree as in �gure 3:
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s(x,2) Fig. 3. Example for ` = 3, i = 1, j = 2Because we have already introduced single-leaf trees for the species s(x;1); : : : ;s(x;`�2) and s(x;1); : : : ; s(x;`�2), we observe that in any `-phylogeny, the truth-setting tree for variable x must have at most 2 connected components for eachof the states sx and sx. We will say that an `-phylogeny sets the satis�abilityvariable x to \true" if and only if the leaves s(x;`) and s(x;`+1) are in thesame connected component for state sx. If the variable x is set to \true"then the leaf s(x;`�1) can be in a di�erent connected component for state sx.15



Therefore, for 1 � h � i, state sxh can form a single connected componentin the truth-setting tree for x. Otherwise, state sxh must have two connectedcomponents in the truth-setting tree for x. Similarly, if x is set to \false" thenleaves s(x;`�1) and s(x;`) can be in the same connected component for state sxand leaf s(x;`+1) can be in a di�erent connected component. Therefore, for1 � h � j, state sxh can form a single connected component in the truth-setting tree for x. Otherwise, state sxh must have two connected componentsin the truth-setting tree for x.Trees TN�m+1; : : : ; TN will be used for clause-checking. For each clause C =xi _ yj _ zk in the satis�ability input we will construct a tree consisting ofa chain of 10 internal nodes. Each internal node will have one leaf, and thespecies at the leaves will be (in order): s(C;`�2); s(xi;`); s(xi;`+1); s(C;`�1); s(yj;`);s(yj ;`+1); s(C;`); s(zk;`); s(zk;`+1); s(C;`+1). For example, if ` = 3, construct a treeas in �gure 4:
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,4)Fig. 4. Example for ` = 3Because we have already introduced single-leaf trees for the species s(C;1); : : : ;s(C;`�3), we observe that in any `-phylogeny, the clause-checking componentfor clause C must have at most 3 connected components for the state sC.This is possible if one of the literals in the clause has been set to \true" by thetruth checking component and not otherwise. The correctness of the reductionfollows. 2The input to the �xed-topology `-phylogeny problem that is constructed inthe proof of Theorem 6 had two notable features. First, (because there areonly ` + 1 species with each state), the input is guaranteed to have an ` + 1-phylogeny. Second, the degree of the tree T is at most 3. Therefore, the �xed-topology `-phylogeny problem is NP-hard for �xed ` > 2 even when the inputis guaranteed to have an ` + 1-phylogeny and the degree of the topology isrestricted to be at most 3.4 The Restricted `-Phylogeny ProblemIn this section we show that there is a polynomial-time algorithm for therestricted 1-phylogeny problem. We then show that the restricted `-phylogenyproblem is NP-hard for �xed ` � 2. 16



We start by describing the algorithm for solving the restricted 1-phylogenyproblem. Suppose that S; c1; : : : ; ck is an input to the restricted 1-phylogenyproblem. If the input has a restricted 1-phylogeny, it has one in which eachspecies in S is the label of exactly one node (if not, combine branches).We de�ne the weight of an edge (v1; v2) in a phylogeny to be the number ofcharacters cj such that cj(v1) 6= cj(v2). That is, the weight of (v1; v2) is thenumber of characters on which the species labeling v1 and v2 disagree. Wede�ne the weight of a phylogeny to be the sum of the weights of its edges.Let G denote the complete graph with vertex set S. We seek a spanning tree Tof G in which, for every character cj and every state i 2 Rcj , the set of verticesc�1j (i) form a connected component in T . Let the weight of an edge (s; s0) in Gbe the number of characters cj such that cj(s) 6= cj(s0). Then a spanning treeof G is a 1-phylogeny for the input if and only if its weight is Pkj=1(rcj � 1),and any spanning tree that is not a 1-phylogeny will have a greater weight.Therefore, the restricted 1-phylogeny problem reduces to the minimumweightspanning tree problem, which can be solved in polynomial time[3]. We haveproved the following theoremTheorem 7 The restricted 1-phylogeny problem can be solved in polynomialtime.In the remainder of this section, we prove the following theorem.Theorem 8 The restricted `-phylogeny problem is NP-hard for �xed ` � 2.Proof. The reduction is from the `-consecutive ones problem, which is de�nedas follows:INSTANCE: A (0,1)-matrix M .QUESTION: Can the rows of M be permuted in such a way that for eachcolumn in the resulting matrix, there are at most ` sequences of consecutiveones.The `-consecutive ones problem is known to be solvable in polynomial timefor ` = 1[3]. However, it is NP-complete for �xed ` > 1[3].Let ` be a positive integer that is greater than or equal to 2. Suppose thatwe are given an input M to the `-consecutive ones problem with n rows andm columns. (We will assume that n � 3`.) We will show how to construct aninput S; c1; : : : ; cm+( n`�1) to the restricted `-phylogeny problem such that thephylogeny input has a restricted `-phylogeny if and only if the rows of M canbe permuted in such a way that for each column in the resulting matrix there17



are at most ` sequences of consecutive ones.The phylogeny input is constructed as follows. Let M 0 be a matrix derivedfrom M by replacing the zeroes in each column of M with integers in therange 2; :::; n + 1 in such a way that each column of M 0 has at most oneoccurence of each integer in the range 2; :::; n+ 1. The species set S will haven species | one for each row of M 0. For j in the range 1 � j � m character cjwill map the species corresponding to row r of M to the entry in column jof row r of M 0. We will de�ne the remaining � n`�1� characters as follows. Forj in the range 1; : : : ; � n`�1� we will have Rcj+m = f0; 1g. We will let Sj denotethe jth size-(` � 1) subset of S and we will set cj+m(s) = 1 for s 2 Sj andcj+m(s) = 0 for s 62 Sj .! Suppose that T is a restricted `-phylogeny for S; c1; : : : ; cm+( n`�1). UsingFact 1, we can assume that each species in S is the label of exactly one nodein T . Let V = fv1; : : : ; v`�1g be any set of ` � 1 vertices of T and let j bethe integer such that the species labeling the vertices in V correspond to theset Sj. Observe that the graph obtained by removing the vertices in V from Thas at most ` connected components (otherwise, the set of vertices c�1j+m(0)form more than ` connected components in T , so T is not an `-phylogeny).We will show that every node in T has degree at most 2. Suppose insteadthat T has a vertex, v1, of degree greater than or equal to 3. We will showthat there are ` � 2 other vertices, v2; : : : ; v`�1 such that the graph obtainedby removing the vertices in V = fv1; : : : ; v`�1g from T has at least ` + 1connected components. This will be a contradiction, so we will conclude thatevery node in T has degree at most 2. To show that v2; : : : ; v`�1 exist, notethat the subgraph of T formed by removing vertex v1 has at least 3 connectedcomponents. Furthermore, if any subgraph T 0 of T that is formed by removingup to `� 1 vertices has fewer than `+ 1 connected components, it is possibleto remove a vertex so as to increase the number of connected components 9 .Let v2 be a vertex such that removing v2 from T � v1 increases the numberof connected components. Similarly, let v3 be a vertex such that removing v3from T �fv1; v2g increases the number of connected components. Continuingthis process we identify v2; : : : ; v`�1. We have now shown that T is a path. Itfollows that we can arrange the rows of M in the order that the correspondingspecies occur on path T and that, in such an arrangement, each column hasat most ` sequences of consecutive ones. Suppose that p = fp1; :::; png is a permutation of f1; :::; ng such that whenthe rows of M are permuted according to p each column has at most ` se-quences of consecutive ones. Let T be a path consisting of the species in S,arranged according to permutation p. Then T is a restricted `-phylogeny for9To see this, note that (since n � 3`) T 0 has some connected component withmore than 2 vertices. 18



S; c1; : : : ; cm+( n`�1). 25 Two-Character PhylogenyIn this section we show that for k = 2 the phylogenetic number problem canbe solved in O(n2) time, where n is the number of species. We start by provingthe following fact.Fact 9 If a phylogeny input S; c1; c2 has an `-phylogeny then it has a restricted`-phylogeny T in which each species in S is the label of exactly one node and foreach character j 2 f1; 2g and each state i 2 Rcj , at most one of the connectedcomponents in the subgraph of T induced by the set of vertices c�1j (i) has morethan one vertex.Proof. Suppose that T 0 is a an `-phylogeny for S; c1; c2. We start by showingthat S; c1; c2 has a restricted `-phylogeny in which each species in S is thelabel of exactly one node. We can assume that each species is the label of atmost one node of T 0 (if not, combine branches). Now, suppose that a speciess 62 S is the label of some node of T 0. We can assume that this node, v, isan internal node of T 0 (otherwise delete it). Let U1 be the set of neighbors uof v such that c1(u) = c1(v). Let U2 be the the set of neighbors u of v suchthat c2(u) = c2(v). Note that U1 \ U2 = ; since s is the only species thatcan label a node in U1 \ U2 and v is the only node with label s. Let U3 bethe set of neighbors of v that are not in U1 or U2. We can form a new `-phylogeny for S; c1; c2 by deleting node v, connecting the vertices in U1 in apath, connecting the vertices in U2 in a path, connecting the vertices in U3 ina path, and connecting some node from U1 to some node in U2 and some nodefrom U2 to some node from U3.We have now shown that S; c1; c2 has a restricted `-phylogeny in which eachspecies in S is the label of exactly one node. Let T be such an `-phylogeny.Suppose that for character j 2 f1; 2g and state i 2 Rcj , C and C 0 are twonon-singleton connected components in the subgraph of T induced by theset of vertices c�1j (i). Let c 2 C and c0 2 C 0 be vertices such that the pathconnecting c to c0 in T does not include any other vertices in C or C 0. (Notethat c and c0 are uniquely de�ned.) For every v 2 C which is adjacent toc note that the path between v and c0 passes through vertex c. Remove theedge (v; c) from T and add the edge (v; c0). Note that the resulting tree is an`-phylogeny for S; c1; c2. (To see this, note that since the species labeling vis di�erent from the species labeling c, the character other than character jdisagrees on v and c.) 2 19



In this section, we represent the phylogeny input S; c1; c2 as a bipartite graph.One set of vertices in the graph will be the set Rc1 and the other set of verticesin the graph will be the set Rc2 . For i 2 Rc1 and j 2 Rc2 the edge (i; j) will bepresent in the graph if and only if S contains a species s such that c1(s) = iand c2(s) = j. (This is the partition intersection graph, [3,3].) Let d(u) denotethe degree of a vertex u in this graph. We will de�ne a special `-coloring of thegraph to be a coloring of the edges with the colors white, blue, red, and purplesuch that each vertex i in Rc1 has max(0; d(i)� `+1) of its neighboring edgescolored either red or purple and the rest of its neighboring edges colored eitherwhite or blue and each vertex j inRc2 has max(0; d(j)�`+1) of its neighboringedges colored either blue or purple and the rest of its neighboring edges coloredeither white or red. (Intuitively, think of each edge as starting out white. Theneach vertex i in Rc1 adds red color to max(0; d(i) � ` + 1) of its neighboringedges and each vertex j in Rc2 adds blue color to max(0; d(j) � ` + 1) of itsneighboring edges. Edges that get colored both red and blue in this processbecome purple.) We will prove the following lemma.Lemma 10 A phylogeny input S; c1; c2 has an `-phylogeny if and only if thecorresponding bipartite graph has a special `-coloring with no purple cycle.Proof. First, suppose that the input S; c1; c2 has an `-phylogeny. By Fact 9it has a restricted `-phylogeny T in which each species in S is the label ofexactly one node and for each character h 2 f1; 2g and each state i 2 Rch,at most one of the connected components in the subgraph of T induced bythe set of vertices c�1h (i) has more than one vertex. Construct a special `-coloring as follows. For each vertex i 2 Rc1 let Ci be the largest connectedcomponent in the subgraph of T induced by the set of vertices c�11 (i). Ar-bitrarily choose max(0; d(i) � ` + 1) of the vertices in Ci and add red colorto the corresponding edges in the graph. For each vertex j 2 Rc2 let Cj bethe largest connected component in the subgraph of T induced by the set ofvertices c�12 (j). Arbitrarily choose max(0; d(j) � ` + 1) of the vertices in Cjand add blue color to the corresponding edges in the graph. We will nowargue that the special `-colored graph has no purple cycle. Suppose insteadthat the special `-colored graph has a purple cycle consisting of the edges(i1; j1); (i2; j1); (i2; j2); : : : ; (im; jm); (i1; jm). Then, by construction, there is apath in T between the species (i1; j1) and the species (i2; j1) which is con-tained in Cj1 . Similarly, there is a path in T between the species (i2; j1) andthe species (i2; j2) which is contained in Ci2. These paths intersect exactlyat the species (i2; j1). Continuing in this manner, we construct a cycle in T ,which contradicts the fact that T is a phylogeny.Next, suppose that the graph has a special `-coloring with no purple cycle.Construct an `-phylogeny T as follows. The nodes of T are the species in S.For each vertex i 2 Rc1, let Ci be the set of species in c�11 (i) such that the20



corresponding edges in the graph have red color. Add a path to T whichtraverses the nodes in Ci. All of the species on this path have the same statein character 1. Also, these species correspond to red edges in the special `-coloring. For the purpose of the proof, we will think of the correspondingnodes in the path as having red color. For each vertex j 2 Rc2 , let Cj bethe set of species in c�12 (j) such that the corresponding edges in the graphhave blue color. Add a path to T which traverses the nodes in Cj. All of thespecies on this path have the same state in character 2. Also, these speciescorrespond to blue edges in the special `-coloring. For the purpose of the proof,we will think of the corresponding nodes in the path as having blue color. Wewill now argue that T has no cycle. Suppose instead that T has a cycle.Note by construction that every edge in the cycle either �xes character 1or �xes character 2 (but not both). For example, the cycle might look like(i1; j1); (i1; j2); (i1; j3); (i2; j3); (i2; j4); (i2; j5); (i1; j5). Let (x1; y1); : : : ; (xm; ym)be the sequence of nodes that we get when we traverse the nodes in the cyclein order, skipping any node such that the edge into the node �xes the samecharacter as the edge out of the node. (For the above example, we get thesequence (i1; j1); (i1; j3); (i2; j3); (i2; j5); (i1; j5).) Each species (xa; ya) is coloredpurple in T , so each edge (xa; ya) is colored purple in the graph. (To see thatspecies (xa; ya) is colored purple in T , note that it is part of a path �xingthe state of character 1 (hence, red color is added). It is also part of a path�xing the state of character 2 (hence, blue color is added).) Finally, we observethat the edges (xa; ya) form a cycle in the graph, which contradicts the factthat the graph has no purple cycle. We conclude that T has no cycle. If T isdisconnected, we arbitrarily add edges making it into a tree. 2We now present a polynomial-time algorithm that takes as input an integer `and a bipartite graph G and determines whether G has a special `-coloringwith no purple cycle. The algorithm proceeds by considering a sequence of spe-cial `-colored graphs fG0; G1; : : :g. Graph G0 is an arbitrary special `-coloringof the graph G. For t � 1, Gt is constructed by modifying the coloring in Gt�1.We will use the notation E(Gt) to denote the set of edges that are containedin some purple cycle in Gt. When the algorithm considers the graph Gt�1 itwill either produce a graph Gt such that E(Gt) � E(Gt�1) or it will terminatewith the answer \no". If the algorithm ever produces a graph Gt such thatE(Gt) = ; it will terminate with the answer \yes".We now show how to construct the graph Gt from Gt�1 (or to terminate withthe answer \no"). Fix an edge e 2 E(Gt�1). The procedure will consider a se-quence of special `-colored graphs G00 = fGt�1; G01; G02; : : :g. For each graph G0jin the sequence, e will be a member of E(G0j). For each graph G0j , let P (G0j)be the graph that is obtained by considering all of the purple edges in G0j(and no other edges) and let (Ue(G0j); Ve(G0j)) be the vertices of the connectedcomponent in P (G0j) that contains e. Let Me(G0j) be the set of edges in the21



connected component in P (G0j) that contains e. To transform G0j into G0j+1 thealgorithm may make one e-move in which it either selects a vertex u 2 Ue(G0j)and transfers the red color from one edge adjacent to u to another edge ad-jacent to u that does not already have red color or the procedure selects avertex v 2 Ve(G0j) and transfers the blue color from one edge adjacent to vto another edge adjacent to v that does not already have blue color. Themove is legal if and only if E(G0j+1) � E(G0j ). Such a move is called a �nish-ing move if E(G0j+1) � E(G0j). It is called an e-continuing move if it is not�nishing, but Me(G0j+1) � Me(G0j). When it considers the special `-coloredgraph G0j , the algorithm checks every possible e-move. If it �nds a legal e-move, it constructs G0j+1 by making this move. If the move is �nishing, thenthe procedure returns the graph Gt = G0j+1. If the move is not �nishing, butit is e-continuing, the procedure now considers the graph G0j+1. (Note that inthis case E(G0j+1) = E(G0j) so e 2 E(G0j).) If there are no legal e-moves thatare �nishing or e-continuing, the algorithm terminates with the answer \no".Note that at most jMe(G00)j continuing moves can be made, so the procedureterminates in polynomial time.The correctness of the algorithm follows from the following lemma.Lemma 11 If a bipartite graph G has a special `-coloring with no purple cycleand H is a special `-coloring of G with e 2 E(H) then there is a legal e-movefrom H that is either �nishing or e-continuing.Proof. Let Ge be the subgraph of G induced by Ue(H) [ Ve(H) and let Sedenote the set of edges in Ge. We wish to compute an upper bound for jSej.To do so, let d0(w) denote the degree of vertex w in graph Ge. Since G hasa special `-coloring with no purple cycle, Ge has a special `-coloring withno purple cycle. Let H 0e be such a special `-coloring of Ge. The number ofedges with red color added in H 0e is at least Pu2Ue(H)(d0(u) � ` + 1). Thenumber of edges with blue color added is at least Pv2Ve(H)(d0(v)� `+1). Thenumber of purple edges (which have both red color and blue color) is at mostjUe(H)j + jVe(H)j � 1. Hence,jSej � Xu2Ue(H)(d0(u)� ` + 1) + Xv2Ve(H)(d0(v)� ` + 1)� (jUe(H)j+ jVe(H)j � 1)and therefore jSej < `(jUe(H)j+ jVe(H)j).Now consider H. Let S1 be the set of edges that are adjacent to vertices in Ueand do not have red color. Let S2 be the set of edges that are adjacent tovertices in Ve and do not have blue color. Suppose that some edge e0 is in S1\S2.Let e00 be a purple edge that is adjacent to e0. Clearly, the e-move that transferscolor from e00 to e0 is legal. Suppose that it is not �nishing and let H 0 be the22



graph obtained from H by making this move. Then Me(H 0) �Me(H)�fe00g.Hence, the move is e-continuing.Suppose instead that S1\S2 = ;. Every vertex w 2 Ue(H)[Ve(H) has d(w) �`. (If d(w) < ` then w will not add color to its neighboring edges in any special`-coloring of G so w will not be in the connected component containing ein P (H).) Therefore jS1j � Pu2Ue(H)(`�1) and jS2j � Pv2Ve(H)(`�1). Let S3be the set of purple edges with endpoints in Ue(H) [ Ve(H). Note that jS3j �jUej+jVej. S3 is disjoint from S1 and S2 so jS1[S2[S3j � `(jUe(H)j+jVe(H)j).We conclude that some edge in S1 or S2 must have an endpoint outside of Ge.Without loss of generality, assume that there is an edge e0 2 S1 that hasendpoint u 2 Ue(H) and its other endpoint, v, outside of Ve(H). There aretwo cases. Suppose that u is contained in a purple cycle in H. Let (u;w) bean edge in such a cycle. Consider the e-move that transfers color from (u;w)to e0. This move is legal. (Since v is not in Ve(H) no purple cycles are createdby the move.) Let H 0 be the graph obtained from H by making this move.E(H 0) � E(H) � f(u;w)g, so the move is �nishing. Suppose instead that u isnot contained in a purple cycle in H. Let (u;w) be the �rst edge on theunique path from u to e in P (H). Consider the legal e-move that transferscolor from (u;w) to e0. Suppose that it is not �nishing and let H 0 be the graphobtained from H by making this move. Then Me(H 0) � Me(H) � f(u;w)g.Hence, the move is e-continuing. 2In Lemma 10 we showed that a phylogeny input S; c1; c2 has an `-phylogenyif and only if the corresponding bipartite graph has a special `-coloring withno purple cycle. We then described a polynomial-time algorithm that takes asinput an integer ` and a bipartite graph G and determines whether G has aspecial `-coloring with no purple cycle. Hence, we have shown that there is apolynomial-time algorithm that takes input ` and a phylogeny input S; c1; c2and determines whether the phylogeny input has an `-phylogeny. (In fact, ouralgorithm constructs an `-phylogeny if one exists.) Using binary search (oreven linear search) on `, we obtain a polynomial-time algorithm that takes asinput a phylogeny input S; c1; c2 and determines the phylogenetic number ofthe input. Hence, we have proved the following theorem.Theorem 12 The phylogenetic number problem can be solved in polynomialtime for k = 2.Unfortunately, Fact 9 no longer holds if we add a third character c3. Hence,our approach does not solve the phylogenetic number problem (or even the`-phylogeny problem) for �xed k � 3. (To see that Fact 9 does not holdfor k > 2, consider the 3-species 3-character input f100; 010; 001g. One canconstruct a 1-phylogeny for this input by attaching each species to the new23



species 000. However, the input does not have a restricted 1-phylogeny.)We now show how to implement the two-character algorithm just describedin time O(n2), where n is the number of species in the input set (hence thenumber of edges in the bipartite partition-intersection graph). In particular,given a special `-coloring of the graph, we give an O(n)-time algorithm toperform an e-�nishing move, perhaps through a series of e-continuing moves.Because there can be at most O(n) e-�nishing moves, the O(n2)-result follows.Let G be the partition-intersection graph for input S; c1; c2. Construct a spe-cial `-coloring in O(n) time by having each node i choose max(0; d(i)� `+ 1)neighbors to color red (if node i is in Rc1) or blue (if node i is in Rc2). Com-pute the biconnected components of graph P (G) (purple edges only) in timeO(n)[3]. If all biconnected components are isolated nodes, then there are nopurple cycles and we are done.Otherwise, mark all the active vertices: those which belong to a biconnectedcomponent of size greater than one and therefore participate in a purple cy-cle. Pick an arbitrary active node v. In O(n) time, compute the connectedcomponent of node v in P (G) using depth-�rst search. We call these nodesinside nodes and all other nodes outside nodes. An edge (vi; vo) is useful ifvi is an inside node, vo is an outside node, and it is not colored by node vi.For example, if vi 2 Rc1 , then it controls the color red, so a useful edge goingoutward from vi is white or blue.If any active node va is adjacent to a useful edge, then we can make a �nishingmove by transferring color from an edge in a purple cycle adjacent to va tothe useful edge (see the proof of lemma 11), and we are done. If there are nosuch edges, �nd all the useful edges adjacent to the remaining inside nodes.Place them in a continuing list and keep a pointer from the inside node tothe corresponding record in this list. Pick the �rst edge on the continuing list(vi; vo). Let vp be the inside node that is vi's parent in the depth-�rst searchtree created above. Then (vp; vi) is the �rst edge on the unique path to thedistinguished node v. We make an e-continuing move (where e is any purple-cycle edge adjacent to node v) by transferring color from (vp; vi) to (vi; vo).This breaks the component of node v in P (G) into two pieces. Node vi and allits descendants in the depth-�rst search tree are now no longer part of nodev's component.We update the continuing list as follows. Starting at node vi, trace each newly-severed node by walking the old depth-�rst tree. For each node x, consider alladjacent nodes y. If y is an inside node, then edge (y; x) is now useful. If nodey is active, then add it to a second �nishing list with a pointer from node y.Otherwise add it to the continuing list. If node y is outside, then this edgeis no longer useful, so remove it from whatever list it is part of. Note that if24



node y is inside now, but is moved outside in this tracing, then the edge (y; x)will be added and then removed from a list.If there is an edge in the �nishing list, we can make a �nishing move andbe done. Otherwise, we pick the �rst edge on the continuing list and iterateuntil we �nd a �nishing move. Heuristically it would be better to pick a useful(continuing) edge from the node that is closest to node v.The process of �nding a �nishing move requires time O(n). Each edge thatwas purple at the start of the phase is traced (perhaps in each direction) atmost twice: once when the �rst connected component is determined and oncewhen the piece containing the edge is severed by an e-continuing move. Eachedge that was originally not purple is considered at most four times: oncefor each endpoint that is initially inside, and once as these endpoints moveoutside. Each of these edges can be added to a list once and removed once.6 Phylogeny With a Fixed Number of StatesIn subsection 6.1 we show that the �xed-topology phylogenetic number prob-lem can be solved in polynomial time for �xed r. On a related note, weshow that if r is �xed, there is a polynomial-delay algorithm for listing �xed-topology `-phylogenies. In subsection 6.2 we show that for �xed r � 2 and �xed` � 3 the restricted `-phylogeny problem is NP-hard. (This result follows froma more general result. Namely, we show that the restricted (`1; `2)-phylogenyproblem is NP-hard for �xed `1 � 2 and `2 � 2 as long as one of `1; `2 isgreater than 2.)6.1 Fixed-Topology Phylogeny with a Fixed Number of StatesIn this subsection we prove the following theorem.Theorem 13 The �xed-topology phylogenetic number problem can be solvedin polynomial time for �xed r.It su�ces to consider each character independently. We are given an inputtree T with each of its n leaves labeled by a state in the range f1; : : : ; rg.We wish to label the internal nodes of T to construct a phylogeny with thesmallest possible phylogenetic number. We root the tree at an arbitrary node,constructing the child and parent pointers. The choice of root will not a�ectthe phylogenetic number of the tree. 25



For a given character, this problem can be solved by a two-pass algorithm:once up the tree and once down. In the upward phase, for each node v, andfor each vector in the setf (i; `1; : : : ; `r) j (1 � i � r) and 0 � `j � n for 1 � j � r gwe construct, if possible, a labeling of the nodes in the subtree rooted at vsuch that v is labeled with state i and, in the subtree rooted at v, the subgraphinduced by nodes labeled j has exactly `j connected components. We call sucha labeling a con�guration of the subtree rooted at v, or a con�guration of v forshort. If there are no leaves in this subtree labeled j for some j 2 f1; : : : ; rg,then we have `j = 0 for all con�gurations (there are no connected componentslabeled j in the subtree rooted at v).There are O(rnr) possible con�gurations for the subtree rooted at any node,with one possible con�guration for each leaf. Once the possible con�gurationshave been constructed for the children of a node, we can construct the possi-ble con�gurations for the parent by combining con�gurations of the childrenincrementally. Consider the �rst two children v1 and v2 of parent node v. Foreach pairing of a con�guration for v1 with a con�guration for v2, we constructr con�gurations for the subtree consisting of parent node v and the subtreesrooted at children v1 and v2, one con�guration for each possible labeling ofthe parent v. If node v is labeled i, and the con�gurations of v1 and v2 arerepresented by the vectors (i1; `11; `12; : : : ; `1r) and (i2; `21; `22; : : : ; `2r) respec-tively, then the resulting con�guration is (i; `1; `2; : : : ; `r) where `j = `1j + `2jfor all j 6= i, and `i = `1i + `2i + 1�m, where m 2 f0; 1; 2g is the number ofchildren (considering only v1 and v2) which are labeled i. That is, the numberof components of state j is the sum of the number of components in eachchild for most states. The only state that can di�er is the state with whichnode v is labeled (i). In this case, if neither v1 nor v2 is labeled i, then wecreate a new component of state i (the node v) in addition to the compo-nents present in the children. If exactly one child is labeled i, then the label ofnode v becomes part of that component. If both v1 and v2 are labeled i, thenone component of state i from each child can merge through node v, and thenumber of components in the combination is one fewer than the sum.Whenever a new possible con�guration is achieved through a combinationof con�gurations in the two children, it is recorded along with pointers tothe con�gurations of v1 and v2 that achieve this phylogenetic con�guration.Although there are r2n2r ways to pair up the con�gurations of two children,there can be at most rnr con�gurations for the parent. If a con�guration isachieved multiple ways, we only remember one way.After computing the O(rnr) con�gurations for the subtree consisting of nodev with the subtrees rooted at v1 and v2 (call this tree T 0), we now add26



child v3. The compuation is almost the same as before. Let possible con-�gurations for T 0 and the subtree rooted at v3 be represented by vectors(i; `01; `02; : : : ; `0r) and (j; `31; `32; : : : ; `3r) respectively. Then the combined con-�guration is (i; `1; `2; : : : ; `r) where `k = `0k + `3k for all k, unless i = j. Inthis case, we have `i = `0i + `3i � 1 because one component of state i fromthe subtree rooted at v3 can connect to components of state i from the otherchildren through the parent v.Each child of node v is added in this way until we have computed the O(rnr)possible con�gurations for the entire subtree rooted at node v. We continue upthe tree until we have computed all possible con�gurations for the root. Thiscomputation takesO(r2n2r+1) time.We then pick a possible con�guration withthe minimum phylogenetic number and go down the tree generating labelsby following the pointers to the subcon�gurations that achieve the optimalcon�guration.The above algorithm makes it clear that if r is �xed, there is a polynomial-delay algorithm for listing �xed-topology `-phylogenies.6.2 Restricted Phylogeny with a Fixed Number of StatesIn this subsection we show that for �xed r � 2 and �xed ` � 3 the restricted`-phylogeny problem is NP-hard.We start by proving the following more general theorem.Theorem 14 The restricted (`1; `2)-phylogeny problem is NP-hard for �xed`1 � 2 and `2 � 2 as long as one of `1; `2 is greater than 2.Proof. Without loss of generality, assume that `1 � `2. The reduction is fromthe 2-consecutive ones problem.Let M be the matrix in the input to the 2-consecutive ones problem. Let n0denote the number of rows of M and m denote the number of columns of M .(We will assume that n0 � 3`2.) We will show how to construct an input tothe restricted (`1; `2)-phylogeny problem such that the phylogeny input has arestricted (`1; `2)-phylogeny if and only if the rows of M can be permuted insuch a way that for each column in the resulting matrix there are at most 2sequences of consecutive ones.The phylogeny input is constructed as follows. Let M 0 be a matrix derivedfrom M by adding 2(`2 � 2) rows to the bottom of M . The entries in the(n0 + i)th row are equal to 0 for odd i > 0 and are equal to one for even27



i > 0. Let n denote n0 + 2(`2 � 2). Note that M 0 has n rows. The species setS = fs1; : : : ; sng will have n species. Species si will correspond to row i of M 0.Let k1 denote � n`2�1�. Let k2 denote � n0`2�1�. Let k3 denote max(0; n � n0 � 1).Let k denote m+ k1 + k2 + k2k3. The input to the phylogeny problem will beS; c1; : : : ; ck. The characters c1; : : : ; ck will be de�ned as follows:(i) (Characters that describe M 0) For j in the range 1 � j � m character cjwill map species si to the entry in column j of row i of M 0.(ii) (Characters that make every phylogeny a path) For j in the range 1 �j � k1 let Sj denote the jth size-(`2� 1) subset of S. We set cm+j(s) = 0for s 2 Sj and cm+j(s) = 1 for s 62 Sj.(iii) (Characters that place sn at one end of the path) For j in the range1 � j � k2 let S0j denote the jth size-(`2 � 1) subset of fs1; : : : ; sn0g. Weset cm+k1+j(s) = 0 for s 2 S0j and cm+k1+j(sn) = 0 and cm+k1+j(s) = 1 forevery other species s.(iv) (Characters that place sn0+1; : : : ; sn consecutively at the end of the path)For j in the range 1 � j � k2 and i in the range 1 � i � k3 let m0denote m + k1 + k2 + (i � 1)k2 + j. We set cm0(sr) = 0 for sr 2 S0j andcm0(sr) = 1 for sr 2 fs1; : : : ; sn0g � S0j. Furthermore, we set cm0(sn0+1) =� � � = cm0(sn�i�1) = 1 and we set cm0(sn�i) = � � � = cm0(sn) = 0.! Suppose that T is a restricted (`1; `2)-phylogeny for S; c1; : : : ; ck. UsingFact 1, we can assume that each species in S is the label of exactly one nodein T . Following the proof of Theorem 8, we can show that every node in T hasdegree at most 2. That is, T is a path. If n = n0 (i.e., `2 = 2) then it followsthat we can arrange the rows ofM in the order that the species occur in path Tand that, in such an arrangement, each column has at most 2 sequences ofconsecutive ones. Suppose instead that n > n0. We will now show that the nodelabeled sn has degree 1. Suppose instead that it has degree 2. We argue as inthe proof of Theorem 8 that there is a size-(`2� 1) set S0 � fs1; : : : ; sn0g suchthat if sn and the species in S0 are removed from T , the resulting subgraph hasat least `2 + 1 connected components. Let j be the integer such that S0 = S0j.Then the set of vertices c�1m+k1+j(1) form more than `2 connected componentsin T , which is a contradiction. We conclude that the node labeled sn is anendpoint of the path. For i in the range 1 � i � k3 we will now argue thatthe node labeled sn�i is adjacent to a node with a label in fsn�i+1; : : : ; sng.Suppose that this is not the case. We argue as in the proof of Theorem 8that there is a size-(`2 � 1) set S0 � fs1; : : : ; sn0g such that if the species inS0[fsn�i; : : : ; sng are removed from T then the resulting subgraph has at least`2+1 connected components. Let j be the integer such that S0 = S0j. Then theset of vertices c�1m+k1+k2+(i�1)k2+j(1) form more than `2 connected componentsin T , which is a contradiction. We conclude that T is a path consisting of thespecies in fs1; : : : ; sn0g (in some order) followed by sn0+1; : : : ; sn. It follows thatwe can arrange the rows of M in the order that the species occur in path Tand that, in such an arrangement, each column has at most 2 sequences of28



consecutive ones. Suppose that p = fp1; :::; p0ng is a permutation of f1; :::; n0g such thatwhen the rows of M are permuted according to p each column has at most2 sequences of consecutive ones. If `2 = 2 then let T be the path consist-ing of the species in fs1; : : : ; sn0g, arranged according to p. T is a restricted(3,2)-phylogeny for S; c1; : : : ; ck. Hence, T is a restricted (`1; `2)-phylogenyfor S; c1; : : : ; ck. Suppose instead that `2 > 2. Let T be a path consisting ofthe species in fs1; : : : ; sn0g, arranged according to permutation p, followed bysn0+1; : : : ; sn. Then T is a restricted (`2; `2)-phylogeny for S; c1; : : : ; ck. Hence,T is a restricted (`1; `2)-phylogeny for S; c1; : : : ; ck. 2Note that Theorem 14 has the following corollary.Corollary 15 For �xed r � 2 and �xed ` � 3 the restricted `-phylogenyproblem is NP-hard.7 ConclusionsIn this section we present some open problems. There are several restrictionsof the parameters which yield problems for which the complexity is still open.Recall that k is the number of characters, r is the maximum number of statesfor any character, and ` is the phylogenetic number. It is unknown whetherthe following restricted versions of the `-phylogeny problem can be solved bypolynomial-time algorithms:(i) Finding an `-phylogeny where the number k of characters is a constantgreater than 2 (for ` > 1),(ii) Finding an `-phylogeny where the number r of states per character is aconstant.(iii) For the case where r = 2, determining whether an input has a (1; 2)-phylogeny or a (2; 2)-phylogeny. Recall that for r = 2, the problem of�nding a (1; 1)-phylogeny is in P. Finding a (2; 3)-phylogeny is NP-complete in the restricted case.This paper also leaves open the problems of randomly generating phylogenieswith constraints upon their phylogenetic number and approximation algo-rithms for the NP-complete versions of the `-phylogeny problem. In particu-lar, suppose that there exists a perfect phylogeny. For what ` can we �nd an`-phylogeny in polynomial time (with ` possibly a function of k and r)?29
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