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tWe 
onsider a sto
hasti
 pro
ess based on the iterated prisoner's dilemmagame. During the game, ea
h of n players has a state, either 
ooperate or defe
t.The players are 
onne
ted by an \intera
tion graph". During ea
h step of thepro
ess, an edge of the graph is 
hosen uniformly at random and the states ofthe players 
onne
ted by the edge are modi�ed a

ording to the Pavlov strategy.The pro
ess 
onverges to a unique absorbing state in whi
h all players 
ooperate.We prove two 
onje
tures of Kitto
k: The 
onvergen
e rate is exponential in nwhen the intera
tion graph is a 
omplete graph, and it is polynomial in n whenthe intera
tion graph is a 
y
le. In fa
t, we show that the rate is O(n log n) in thelatter 
ase.1 Introdu
tionIn a two-player prisoner's dilemma game [1, 9℄, ea
h player may 
hoose to 
ooperate or todefe
t. If both players 
ooperate, they ea
h re
eive a reward of R points. If both playersdefe
t, they ea
h re
eive only P points. If exa
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and 2R > T +S. Thus, in a single round, it is best for ea
h player to defe
t even thoughthis is not globally optimal. In the iterated prisoner's dilemma game, rounds are playedrepeatedly and players may base their de
isions on the out
omes of previous rounds.Empiri
al eviden
e 1 indi
ates that an e�e
tive strategy for this game is the so-
alled\Pavlov" strategy: If a player is \rewarded" with T or R points during a given round,then he repeats his previous move next time. If he is \punished" with P or S pointsthen he does not repeat his previous move. A small 
ase analysis reveals that the Pavlovstrategy 
an also be stated as follows: A player 
ooperates if and only if he has madethe same 
hoi
e as his opponent during the previous round.Kitto
k [5℄ studied the Pavlov strategy2 in a distributed setting: n players are 
on-ne
ted by an \intera
tion graph". During a round of the game, an edge of the graph issele
ted uniformly at random. The two players 
onne
ted by the edge play one round,using the Pavlov strategy. That is, if a player agreed with his (previous) opponent lasttime he was 
hosen to play, then he 
ooperates this time. Otherwise he defe
ts. As longas the intera
tion graph is 
onne
ted, the game 
onverges to a unique absorbing statein whi
h every player 
ooperates. Kitto
k was interested in determining the absorptiontime | that is, the time required to rea
h the absorbing state. He provided empiri
aleviden
e for the 
onje
ture that the absorption time is exponential in n if the graph isthe 
omplete graph, and polynomial in n if the graph is a 
y
le. In this note, we proveKitto
k's 
onje
tures.The basi
 method whi
h we use to prove both theorems is to de�ne an appropriatepotential fun
tion so that the progress of the Pavlov pro
ess may be 
ompared to that ofa one-dimensional random walk. See, for example, [6℄. Similar te
hniques are often usedto analyse the mixing time of Markov 
hains via 
oupling arguments. In the 
oupling
ontext, the observed state spa
e is taken to be the set of pairs of Markov-
hain states,and the potential fun
tion is de�ned to be the distan
e between the states in the pair,with respe
t to some metri
. See, for example, [7, 8, 2, 4℄.2 PreliminariesWe are given a population of n � 4 players situated at the verti
es of a 
onne
ted graphG = (V;E). Ea
h player has an initial state X(i) 2 f�1; 1g. The 1 values en
ode thede
ision \
ooperate" and are referred to as pluses. The �1 values en
ode the de
ision\defe
t" and are referred to as minuses. During ea
h step of the Pavlov pro
ess, we1Axelrod [1℄ hosted a 
omputer tournament in whi
h strategies proposed by game theorists wereplayed against ea
h other. Surprisingly, a simple Markovian strategy won the tournament. That is, thewinning strategy has the property that the de
ision of a given player in a given round depends onlyon the out
ome of the previous round, and not on the rest of the history of the game. Nowak andSigmund [9℄ did a 
omputational study of all su
h Markovian strategies, and found the Pavlov strategyto be \best".2Kitto
k's paper is des
ribed using AI language, but the iterated prisoner's dilemma strategy thathe studies (whi
h he 
alls the zero-memory HCR strategy) is pre
isely the Pavlov strategy. For moreinformation about the 
ontext of Kitto
k's work and the HCR generalisation of the Pavlov strategy,see Shoham and Tennenholtz's paper [10℄. 2




hoose a pair fi; jg 2 E uniformly at random and repla
e X(i) and X(j) by X(i)X(j).The state X� with X�(i) = 1 for all i 2 V is an absorbing state of this pro
ess. If G
ontains no isolated verti
es then X� is the unique absorbing state and there exists asequen
e of moves whi
h 
an transform X to X�, for every X 2 f1;�1gV .We are interested in the absorption time; that is, the time required for the Pavlovpro
ess to rea
h the absorbing state. We investigate two families of graphs, namely
y
les and 
omplete graphs. Using a 
oupon-
olle
tor-like argument, Shoham and Ten-nenholtz [10℄ proved that, for a large 
lass of strategies, the absorption time for both ofthese families is 
(n logn). We prove the following theorems, showing that the Pavlovpro
ess has optimal absorption time when G is a 
y
le, and exponential absorption timewhen G is a 
omplete graph.Theorem 1 Let G be a 
y
le on n verti
es and let " > 0 be given. With probability atleast 1� ", the Pavlov pro
ess rea
hes the absorbing state in492 n log�49n94"�steps.Theorem 2 Let Tn denote the absorption time of Pavlov pro
ess on the graph Kn start-ing from a 
on�guration X0 with fewer than 3n=5 pluses. With probability 1� o(1) wehave Tn � (1:1)n.3 Optimal absorption on 
y
lesLet G be a 
y
le on the vertex set [n℄ = f0; : : : ; n� 1g. That is, G has n edges fi; i+ 1gfor 0 � i < n. Here, and throughout the paper, addition and subtra
tion on verti
es isperformed modulo n.We de�ne a potential fun
tion  : f1;�1gV ! R to measure the distan
e of a givenstate X from the absorbing state X�. First, we must introdu
e some terminology. LetX 2 f1;�1gV be given. A run in X is an interval [i; j℄ where 0 � i; j < n, su
h thatX(`) = �1 for ` = i; i + 1; : : : ; j � 1; j and X(i� 1) = 1, X(j + 1) = 1. (It is possibleto have j < i, sin
e we are working modulo n.) Clearly all runs are disjoint. We 
ande�ne the set R(X) of all runs in X. By 
onvention, the all-minuses 
on�guration isnot 
onsidered a run, sin
e it has no bordering pluses.Suppose that r = [i; j℄. The length of the run r, denoted by `(r), equals the numberof minuses in the run. We will refer to a run of length ` as an `-run. A 1-run will alsobe 
alled a singleton and a 2-run will also be 
alled a pair. Then the potential fun
tion is given by (X) = j fi : X(i) = �1g j+ � � jR(X)j+ 
 � j fr 2 R(X) : r is a singletong j+ Æ � j fr 2 R(X) : r is a pairg j:3



The parameters �, 
 and Æ will be set below. Note that a singleton is a barrier toabsorption sin
e a singleton minus 
annot be 
hanged to a plus in one step. The singletonmust �rst be
ome part of a longer run. So we set 
 > 0 to penalise singletons. On theother hand, pairs give the opportunity for two minuses to be 
hanged at one step. Thuspairs are helpful, and we re
e
t this by setting Æ < 0. We also set � > 0. Clearly (X�) = 0 for any values of �, 
, Æ sin
e X�(i) = 1 for all i, and R(X�) = ;. For to be a well-de�ned potential fun
tion, we must also show that  (X) > 0 wheneverX 6= X�. This is a
hieved if �2 < Æ < 0, sin
e there 
an be at most half as many pairsin X as there are minuses.3.1 The analysisWe now analyse the Pavlov pro
ess using the potential fun
tion  . Let X0 2 f1;�1gVbe �xed. Clearly if X0 = X� there is nothing to prove. So, suppose that X0 
ontainsat least one minus. Let X1 be the result of performing one step of the pro
ess fromstarting point X0. We will �nd an upper bound for E [ (X1)�  (X0)℄.Note that ea
h edge overlaps at most one run in R(X0), and that there are ` + 1edges whi
h overlap a given `-run. Spe
i�
ally, if r = [i; j℄ then these `(r) + 1 edges arefi� 1; ig ; : : : ; fj; j + 1g :Let L(X0) be de�ned by L(X0) = Xr2R(X0)(`(r) + 1):Then L(X0) equals the number of edges whi
h overlap some run in X0. Denote byv(X0; e) the value of  (X1) �  (X0) given that the edge e has been 
hosen by thePavlov pro
ess in step 1. Let r be an `-run and let�(r) = Xe overlaps r v(X0; e):By de�nition we have E [ (X1)�  (X0)℄ = 1nXe2E v(X0; e);sin
e there are n edges in G. When X0 
ontains both pluses and minuses we 
an alsostate that E [ (X1)�  (X0)℄ = 1n Xr2R(X0) �(r);sin
e runs are disjoint and an edge whi
h does not overlap a run makes no 
hange toX0. Let M =M(X0) be de�ned byM = max� �(r)`(r) + 1 j r 2 R(X0)� :4



That is,M is the maximum over all runs of the average 
ontribution of ea
h edge in thatrun. The way in whi
hM will be used is des
ribed below. We ignore two 
on�gurations:the all-pluses 
on�guration X�, and the all-minuses 
on�guration. The latter is treatedseparately in Se
tion 3.2.Lemma 1 Suppose that X0 
ontains both pluses and minuses. WithM ,  and L de�nedas above, we have E [ (X1)℄ � �1 + ML(X0) (X0)n � (X0):Proof. From above, we haveE [ (X1)�  (X0)℄ = 1n Xr2R(X0) �(r)� 1n Xr2R(X0)(`(r) + 1)M= ML(X0)nWe 
an rearrange this inequality to giveE [ (X1)℄ �  (X0) + ML(X0)n = �1 + ML(X0) (X0)n � (X0);as stated.Suppose that the values of �, 
, Æ 
ould be set to ensure that M < 0. Then, byLemma 1, the value of  de
reases in expe
tation at every step. This will be used inSe
tion 3.2 to 
al
ulate an upper bound for the absorption time of the Pavlov pro
ess.Let r = [i; j℄ be a run. Then there are two outer rim edges asso
iated with r, namelyfi� 1; ig and fj; j + 1g. If r has length at least 3 then there are also two inner rimedges asso
iated with r, namely fi; i + 1g and fj � 1; jg. If r is a singleton then thereare no inner rim edges, while if r is a pair [i; i+1℄ then there is a unique inner rim edgefi; i + 1g. All other edges whi
h overlap r are stri
tly inside the interval [i; j℄, and we
all these edges internal edges.Suppose that there are two runs in R(X0) whi
h are only separated by a single plus,i.e. [i; j℄ and [j + 2; k℄ for some i, j, k. Then there are two edge 
hoi
es fj; j + 1g andfj + 1; j + 2g whi
h 
ause the two runs to merge (note that these edges are both outerrim edges for the runs whi
h they overlap). For simpli
ity, we will �rst assume that thereare no edge 
hoi
es whi
h 
ause runs to merge. That is, in Lemma 2 we assume thatall adja
ent runs in R(X0) are separated by at least two pluses. By 
arefully 
hoosingvalues for �, 
 and Æ in this 
ase, we show that M is negative: spe
i�
ally M = �1=14.In Lemma 3 we return to 
on�gurations whi
h 
ontain adja
ent runs separated by asingle plus. 5



Before presenting Lemma 2, we make a few general remarks. When all adja
ent runsare separated by at least two pluses, 
hoosing an outer rim edge will always 
ause r toin
rease in length by 1, introdu
ing an extra minus. Similarly, 
hoosing an inner rimedge will always 
ause r to de
rease in length by 2, 
hanging two minuses to pluses.When the length of r is small there might be additional e�e
ts from these four edges,as we shall see. When any internal edge is 
hosen, the run r is split into two runs whi
hare separated by two pluses. If the two runs have length k and ` we say that this edge
hoi
e produ
es a (k; `)-split.We 
an now prove that M is negative for 
ertain �xed values of �, 
 and Æ, when X0
ontains both pluses and minuses and all adja
ent runs are separated by at least twopluses.Lemma 2 Let X0 
ontain both pluses and minuses, and suppose that adja
ent runs inX0 are separated by at least two pluses. Then setting � = 27=14, 
 = 4=7 and Æ = �4=7we obtain M = �1=14.Proof. We will 
onsider runs r of di�erent lengths in turn, and 
al
ulate �(r)=(`(r)+1)in ea
h 
ase. Then M is the maximum of these values.A 1-run. Let r be a 1-run [i; i℄. The only edges whi
h overlap r are the outer rim edgesfi� 1; ig and fi; i+ 1g. When either of these edges are 
hosen, a vertex adja
ent tothe 1-run 
hanges from a plus to a minus. This introdu
es an extra minus and 
hangesa 1-run (singleton) to a 2-run (a pair), without 
hanging the total number of runs.Therefore �(r)2 = 1� 
 + Æ = �17 : (1)A 2-run. Suppose that r = [i; i + 1℄. There are 3 edges whi
h overlap r. When eitherof the outer rim edges fi� 1; ig or fi+ 1; i+ 2g are 
hosen the 2-run be
omes a 3-run,introdu
ing an extra minus and deleting a pair. There is only one inner rim edge, theedge fi; i+ 1g. When this edge is 
hosen, both minuses in the pair be
ome pluses. Herewe lose two minuses and delete a pair, de
reasing the number of runs by 1. Addingthese 
ontributions and dividing by 3 we �nd that�(r)3 = 2(1� Æ)� (2 + � + Æ)3 = �� + 3Æ3 = � 114 : (2)A 3-run. Suppose that r = [i; i + 2℄. There are 4 edges whi
h overlap r, namely thetwo outer rim edges and the two inner rim edges. Choosing an outer rim edge turns the3-run into a 4-run, introdu
ing an extra minus. Choosing an inner rim edge turns the3-run into a 1-run. Hen
e�(r)4 = 2 + 2(�2 + 
)4 = �1 + 
2 = � 314 : (3)6



A 4-run. Suppose that r = [i; i + 3℄ for some i. There are 5 edges whi
h overlapr. Choosing an outer rim edge 
auses r to in
rease in length by 1, introdu
ing a newminus. Choosing an inner rim edge 
auses the length of r to de
rease by 2: in this 
asethis introdu
es a new pair. Finally, there is one internal edge fi+ 1; i+ 2g. Choosingthis edge produ
es a (1; 1)-split. This introdu
es two singletons and in
reases the totalnumber of runs by 1, while removing two minuses. Adding these 
ontributions togetherand dividing by 5, we obtain�(r)5 = 2 + 2(�2 + Æ) + (�2 + � + 2
)5 = �4 + � + 2
 + 2Æ5 = �2970 : (4)A 5-run. Let r = [i; i + 4℄ for some i. There are six edges whi
h overlap r. Choosingan outer rim edge 
auses r to in
rease in length by 1. Choosing an inner rim edge
auses the length of r to de
rease by 2. There are two internal edges, fi+ 1; i+ 2gand fi+ 2; i+ 3g. Choosing either of these edges produ
es a (1; 2)-split, deleting twominuses, introdu
ing a singleton and a pair, as well as in
reasing the number of runsby 1. Adding the 
ontributions from all of these edges together, and dividing by 6, weobtain �(r)6 = 2� 4 + 2(�2 + � + 
 + Æ)6 = �3 + � + 
 + Æ3 = � 514 : (5)A 6-run. Let r = [i; i + 5℄. There are 7 edges whi
h overlap r. If an outer rim edge is
hosen then r in
reases in length by 1. If an inner rim edge is 
hosen then r de
reases inlength by 2. There are 3 internal edges. Choosing fi+ 1; i+ 2g or fi+ 3; i+ 4g produ
esa (1; 3)-split, de
reasing the number of minuses by 2 while in
reasing the number ofsingletons and the number of runs by 1. Finally, 
hoosing the edge fi+ 2; i+ 3g produ
esa (2; 2)-split, de
reasing the number of minuses by 2, in
reasing the number of runs by1 and the number of pairs by 2. Combining this information we �nd that�(r)7 = 2� 4 + 2(�2 + � + 
) + (�2 + � + 2Æ)7 = �8 + 3� + 2
 + 2Æ7 = �3198 : (6)An `-run, where ` � 7. Now suppose that r = [i; j℄ is an `-run for some ` � 7.Choosing either of the two outer rim edges 
auses r to in
rease in length by 1. Choosingeither of the two inner rim edges 
auses r to de
rease in length by 2. There are 4 internaledges whi
h need 
areful analysis. Choosing either fi+ 1; i+ 2g or fj � 2; j � 1g pro-du
es a (1; `� 3)-split, introdu
ing a singleton and in
reasing the number of runs by 1,while de
reasing the number of minuses by 2. Similarly, 
hoosing either fi+ 2; i+ 3g orfj � 3; j � 2g produ
es a (2; `� 4)-split, introdu
ing a pair and in
reasing the number7



of runs by 1, while de
reasing the number of minuses by 2. There are `�7 other internaledges whi
h split r into pairs of runs, ea
h of length at least 3. In ea
h 
ase, the numberof minuses de
reases by 2 while the number of runs in
reases by 1, but the numbers ofsingletons and pairs are un
hanged. We obtain�(r)`+ 1 = 2� 4 + 2(�2 + � + 
) + 2(�2 + � + Æ) + (`� 7)(�2 + �)`+ 1= � � 2� 4� � 6� 2
 � 2Æ`+ 1= � 114 � 127(`+ 1) : (7)Now M is equal to the maximum of the right hand sides of (1){(7). It is easy toverify that the maximum is �1=14, as stated.For the remainder of this se
tion, the values of � = 27=14, 
 = 4=7 and Æ = �4=7are �xed. These values were 
hosen without explanation for use in the proof of Lemma 2above. They were originally derived by setting � = 2� �, 
 = 1=2+ � and Æ = �
, and
hoosing � to minimize M . The interested reader 
an easily verify that � = 1=14 is theoptimal 
hoi
e.We now show that the value M = �1=14 
an still be used in Lemma 1 even whenthe initial 
on�guration has adja
ent runs whi
h are separated by a single plus.Lemma 3 Suppose that X0 2 f1;�1g 
ontains both pluses and minuses. Then the
on
lusion of Lemma 1 holds with M = � 114 :Proof. By Lemma 2, we have M = �1=14 whenever no two adja
ent runs in X0 areseparated by a single plus. So now suppose that there are exa
tly s distin
t valuesi 2 f0; : : : ; n� 1g su
h that X0(i � 1) = �1, X0(i) = 1 and X0(i + 1) = �1, wheres � 1. We will 
all su
h an i a rim vertex. De�ne a new 
y
le G0 = (V 0; E 0) from G bysplitting the vertex i into two new verti
es, i0 and i00, for ea
h rim vertex i. Thus G0 is agraph on n+ s verti
es. Let the edges of G0 be obtained from the edges of G by deletingthe edges fi� 1; ig, fi; i + 1g and adding the edges fi� 1; i0g, fi0; i00g, fi0; i+ 1g, forea
h rim vertex i. Thus G0 forms a 
y
le on n+ s verti
es. Constru
t the 
on�gurationX00 2 f1;�1gV 0 from X0 by repla
ing the single plus at i by two pluses on i0, i00, forea
h rim vertex i. That is, letX00(j) = (X0(j) if j is unprimed,1 otherwise:8



By de�nition, X00 has no two adja
ent runs separated by a single plus. Note also thatL(X00) = L(X0). Let X10 be the result of running the Pavlov pro
ess for one step fromX00. Combining Lemma 1 and Lemma 2, we see thatE [ (X10)�  (X00)℄ � � L(X00)14(n+ s) :Suppose that we 
ould show thatXe2E(G0) v(X00; e) � Xe2E(G) v(X0; e): (8)Then we would haveE [ (X10)�  (X00)℄ = 1n+ s Xe2E(G0) v(X00; e)� 1n+ s Xe2E(G) v(X0; e)= nn+ sE [ (X1)�  (X0)℄ :From this we 
ould 
on
lude thatnn+ sE [ (X1)�  (X0)℄ � E [ (X10)�  (X00)℄� � L(X00)14(n+ s)= � L(X0)14(n+ s) :Multiplying this inequality through by (n+ s)=n proves the lemma. Hen
e it suÆ
es toestablish (8).It is not diÆ
ult to see that any edge whi
h does not overlap a rim vertex in X0makes the same 
ontribution in both the primed and unprimed settings. For these edgese belong to both E(G) and E(G0), andv(X00; e) = v(X0; e):Therefore, to prove (8) it suÆ
es to prove that Y 0 > Y for all rim verti
es i, whereY = v(X0; fi� 1; ig) + v(X0; fi; i+ 1g)and Y 0 = v(X00; fi� 1; i0g) + v(X00; fi00; i + 1g):(Clearly the edge fi0; i00g makes no 
ontribution to E [ (X10)�  (X00)℄.) Let r1 and r2be the two runs whi
h are separated by i in X0, and de�ne a and b bya = j fj 2 f1; 2g j rj is a singletong j and b = j fj 2 f1; 2g j rj is a pairg j:9



Then 0 � a + b � 2. Consider 
hoosing either fi� 1; i0g or fi00; i+ 1g for X00. Clearlyeither 
hoi
e will 
ause a minus to be introdu
ed. For a of these 
hoi
es a singleton isremoved and a pair is 
reated, while for b of these 
hoi
es a pair is removed. ThereforeY 0 = 2� a
 + aÆ � bÆ:Now 
onsider 
hoosing either fi� 1; ig or fi; i+ 1g in X0. The expe
ted 
hange of  isidenti
al for either 
hoi
e. Choosing either of these edges introdu
es a minus, de
reasesthe number of runs by 1, and deletes all singletons or pairs whi
h are present in X0.The merged run whi
h is 
reated has length `(r1) + `(r2) + 1 � 3, so no singletons orpairs are 
reated. Therefore Y = 2(1� � � a
 � bÆ):Hen
e, using the values of �, 
 and Æ we obtainY 0 � Y = 2� + a(
 + Æ) + bÆ � 2(� + Æ) > 0;proving the lemma.3.2 Bounding the absorption timeWe have �xed � = 27=14, 
 = 4=7, Æ = �4=7. Re
all that L(X0) =Pr2R(X0)(`(r) + 1).Combining Lemmas 1, 2, 3 we obtainE [ (X1)℄ � �1� L(X0)14 (X0)n� (X0); (9)for all X0 whi
h 
ontain both pluses and minuses. We need the following result.Lemma 4 Let X 2 f1;�1gV and let  , L be as de�ned above. Then (X) � 7L(X)4 (10)if X 
ontains both pluses and minuses, while4714 �  (X) � 7n4 (11)for all X 6= X�.Proof. First suppose that X 
ontains both pluses and minuses. Let  (r) denote thepotential of the run r, for all r 2 R(X). That is, (r) = 8><>:1 + � + 
 if r is a singleton,2 + � + Æ if r is a pair,`(r) + � otherwise.10



Clearly  (X) = Xr2R(X) (r):It is not diÆ
ult to 
he
k that the inequality (r)`(r) + 1 � 74holds, with equality if and only if r is a singleton. Hen
e (X) = Xr2R(X) (r) � Xr2R(X) 7(`(r) + 1)4 = 7L(X)4 ;as stated. Now L(X) denotes the number of edges whi
h overlap some run in X. Sin
ethere are at exa
tly n edges in G, it follows that (X) � 7n4whenever X 
ontains both pluses and minuses. Sin
e the all-minuses 
on�guration haspotential n, this proves the upper bound in (11). Finally, note that (r) � 4714 ;with equality if and only if r is a pair. Therefore the lowest potential of all 
on�gurationswith both minuses and pluses is obtained on any 
on�guration whi
h 
ontains a uniquerun, this unique run being a pair. The all-minuses 
on�guration has potential n, but wehave assumed that n is at least 4. This proves the lower bound in (11).Proof of Theorem 1. Combining (9) and inequality (10) of Lemma 4, we 
an 
on
ludethat E [ (X1)℄ � �1� 249n� (X0) (12)for all X0 whi
h 
ontain both pluses and minuses. However, (12) also holds for theall-minuses 
on�guration, as follows. Let ~X be the all-minuses 
on�guration, de�ned by~X0(i) = �1 for all i. Let ~X1 be the result of running the Pavlov pro
ess for one stepfrom ~X0. No matter whi
h edge is 
hosen, the number of minuses de
reases by 2 and thenumber of runs in
reases from 0 to 1. Therefore E h ( ~X1)�  ( ~X0)i = � � 2 = �1=14.Sin
e  ( ~X0) = n, we 
on
lude thatE h ( ~X1)i = �1� 114n� ( ~X0) < �1� 249n� ( ~X0);as 
laimed. 11



So now letX0 2 f1;�1gV satisfy X0 6= X�. Starting fromX0, run the Pavlov pro
essfor t steps and let the resulting state be Xt. By applying (12) iteratively t times weobtain E [ (Xt)℄ � �1� 249n�t  (X0) � �1� 249n�t 7n4 ;using the �rst statement of Lemma 4 for the last inequality. Let " > 0 be given. Let� = 47"=14. Whenever t � 492 n log�7n4��we have E [ (Xt)℄ � �. Using (11), any nonzero value of  must be at least 47=14.Applying Markov's Lemma, we haveProb [ (Xt) 6= 0℄ = Prob � (Xt) � 4714� � 14�47 = ":This 
ompletes the proof.4 Exponential absorption on the 
omplete graphIn this se
tion we prove Theorem 2, showing that the absorption time of the Pavlovpro
ess is exponential on the 
omplete graph Kn.We will use the notation Xt 2 f1;�1gn to refer to a 
on�guration after t steps ofthe Pavlov pro
ess. Let Nt be the number of nodes in Xt with label 1. Clearly Xt isequal to the all-pluses absorbing state if and only if Nt = n. The basis of our proofis the observation that the pro
ess Nt is simple to analyse, even if the pro
ess Xt isnot. Let pt, qt denote the labels of the two nodes 
hosen at step t. Then the transitionprobabilities of Nt are given by the following rule:Nt+1 = 8<: Nt � 1 if ptqt = �1 (probability Nt(n�Nt)=�n2�);Nt if pt = qt = 1 (probability �Nt2 �=�n2�);Nt + 2 if pt = qt = �1 (probability �n�Nt2 �=�n2�):Consider the \speed-up" (Mt) of the 
hain (Nt), whi
h only makes transitions that
hange the state:Mt+1 = � Mt � 1 with probability 2Mt=(n+Mt � 1);Mt + 2 with probability (n�Mt � 1)=(n+Mt � 1):If M0 = N0, then the time for Mt to hit n is 
learly at most that for Nt. We will nowshow that it takes exponentially long for Mt to rea
h n. Consider the 
hain (Qt) withtransition probabilities given byQt+1 = � Qt � 1 with probability 3=4;Qt + 2 with probability 1=4:12



If Q0 =M0 � 3n=5 then (Mt) is sto
hasti
ally dominated by (Qt) as long asMt � 3n=5.Let V (k) = ak, where a = (p13 � 1)=2. Note that a > 1 and that a satis�es34a�1 + 14a2 = 1. ThenE(V (Qt+1) j V (Qt)) = 34 aQt�1 + 14 aQt+2 = aQt = V (Qt);so V (Qt) is a martingale.Suppose that Q0 is d3n=5e or d3n=5e + 1. Let T = minft j Qt < 3n=5 or Qt � n g.It is straightforward to show that Prob(QT � n) � a�2n=5. The analysis is in Exam-ple 4.1 of [3℄. We in
lude it here for 
ompleteness. First, sin
e Prob(T < 1) = 1 andjV (Qmin(T;t))j � an+1 for all t, we have EV (QT ) = EV (Q0). This follows the stoppingtheorem for bounded martingales, see, for example, (3.6) of [3℄. Now V (Q0) � a3n=5+2,so EV (QT ) � a3n=5+2. Also,EV (QT ) � a3n=5�1 � Prob(QT < 3n=5) + an � Prob(QT � n);sin
e QT < 3n=5 implies QT = d3n=5e � 1 � 3n=5� 1. Hen
eProb(QT � n) � a3n=5+2 � a3n=5�1an � a3n=5�1 ;whi
h is at most a�2n=5 as long as n is suÆ
iently large (n � 23 suÆ
es).We 
on
lude that every time (Mt) enters the interval [3n=5; n� 1℄ from below, theprobability that it exits out the top of the interval (rather than the bottom) is at mosta�2n=5. Thus, the probability that the 
hain rea
hes absorption in as few as (1:1)n visitsto the region is at most (a�2=5 � 1:1)n = o(1):This proves Theorem 2.5 Other topi
sSeveral issues remain for further study. A natural extension of our results would beto investigate the Pavlov pro
ess for other families of graphs. Two other 
ases seemparti
ularly interesting: degree-bounded trees and random graphs. Another possibleingredient to our model is random noise (or player mistakes). The importan
e of thisparameter has been previously re
ognized in [9℄.A
knowledgementsWe thank the referee for shortening the proof of Theorem 2.
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