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Abstract

We consider a stochastic process based on the iterated prisoner’s dilemma
game. During the game, each of n players has a state, either cooperate or defect.
The players are connected by an “interaction graph”. During each step of the
process, an edge of the graph is chosen uniformly at random and the states of
the players connected by the edge are modified according to the Pavlov strategy.
The process converges to a unique absorbing state in which all players cooperate.
We prove two conjectures of Kittock: The convergence rate is exponential in n
when the interaction graph is a complete graph, and it is polynomial in n when
the interaction graph is a cycle. In fact, we show that the rate is O(nlogn) in the
latter case.

1 Introduction

In a two-player prisoner’s dilemma game [1, 9], each player may choose to cooperate or to
defect. 1f both players cooperate, they each receive a reward of R points. If both players
defect, they each receive only P points. If exactly one player cooperates, he receives
S points while his opponent receives 1" points. The parameters satisty "> R > P > S
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and 2R > T+ S. Thus, in a single round, it is best for each player to defect even though
this is not globally optimal. In the terated prisoner’s dilemma game, rounds are played
repeatedly and players may base their decisions on the outcomes of previous rounds.
Empirical evidence ! indicates that an effective strategy for this game is the so-called
“Pavlov” strategy: If a player is “rewarded” with T or R points during a given round,
then he repeats his previous move next time. If he is “punished” with P or S points
then he does not repeat his previous move. A small case analysis reveals that the Pavlov
strategy can also be stated as follows: A player cooperates if and only if he has made
the same choice as his opponent during the previous round.

Kittock [5] studied the Pavlov strategy? in a distributed setting: n players are con-
nected by an “interaction graph”. During a round of the game, an edge of the graph is
selected uniformly at random. The two players connected by the edge play one round,
using the Pavlov strategy. That is, if a player agreed with his (previous) opponent last
time he was chosen to play, then he cooperates this time. Otherwise he defects. As long
as the interaction graph is connected, the game converges to a unique absorbing state
in which every player cooperates. Kittock was interested in determining the absorption
time — that is, the time required to reach the absorbing state. He provided empirical
evidence for the conjecture that the absorption time is exponential in n if the graph is
the complete graph, and polynomial in 7 if the graph is a cycle. In this note, we prove
Kittock’s conjectures.

The basic method which we use to prove both theorems is to define an appropriate
potential function so that the progress of the Pavlov process may be compared to that of
a one-dimensional random walk. See, for example, [6]. Similar techniques are often used
to analyse the mixing time of Markov chains via coupling arguments. In the coupling
context, the observed state space is taken to be the set of pairs of Markov-chain states,
and the potential function is defined to be the distance between the states in the pair,
with respect to some metric. See, for example, [7, 8, 2, 4].

2 Preliminaries

We are given a population of n > 4 players situated at the vertices of a connected graph
G = (V, E). Each player has an initial state X (i) € {—1,1}. The 1 values encode the
decision “cooperate” and are referred to as pluses. The —1 values encode the decision
“defect” and are referred to as minuses. During each step of the Pavlov process, we

! Axelrod [1] hosted a computer tournament in which strategies proposed by game theorists were
played against each other. Surprisingly, a simple Markovian strategy won the tournament. That is, the
winning strategy has the property that the decision of a given player in a given round depends only
on the outcome of the previous round, and not on the rest of the history of the game. Nowak and
Sigmund [9] did a computational study of all such Markovian strategies, and found the Pavlov strategy
to be “best”.

ZKittock’s paper is described using AI language, but the iterated prisoner’s dilemma, strategy that
he studies (which he calls the zero-memory HCR strategy) is precisely the Pavlov strategy. For more
information about the context of Kittock’s work and the HCR generalisation of the Pavlov strategy,
see Shoham and Tennenholtz’s paper [10].



choose a pair {7, j} € E uniformly at random and replace X (i) and X (j) by X (7)X(j).
The state X* with X*(i) = 1 for all i € V is an absorbing state of this process. If G
contains no isolated vertices then X* is the unique absorbing state and there exists a
sequence of moves which can transform X to X*, for every X € {1, —l}v.

We are interested in the absorption time; that is, the time required for the Pavlov
process to reach the absorbing state. We investigate two families of graphs, namely
cycles and complete graphs. Using a coupon-collector-like argument, Shoham and Ten-
nenholtz [10] proved that, for a large class of strategies, the absorption time for both of
these families is Q(nlogn). We prove the following theorems, showing that the Pavlov
process has optimal absorption time when G is a cycle, and exponential absorption time
when G is a complete graph.

Theorem 1 Let G be a cycle on n vertices and let € > 0 be given. With probability at
least 1 — ¢, the Pavlov process reaches the absorbing state in

49 o 49n
_n —
2 & 94¢e

steps.

Theorem 2 Let T, denote the absorption time of Pavlov process on the graph K, start-
ing from a configuration X, with fewer than 3n/5 pluses. With probability 1 — o(1) we
have T,, > (1.1)™.

3 Optimal absorption on cycles

Let G be a cycle on the vertex set [n] = {0,...,n — 1}. That is, G has n edges {i,i + 1}
for 0 < i < n. Here, and throughout the paper, addition and subtraction on vertices is
performed modulo n.

We define a potential function 1 : {1, —1}" — R to measure the distance of a given
state X from the absorbing state X*. First, we must introduce some terminology. Let
X € {1, —1}V be given. A run in X is an interval [i, j] where 0 < i, j < n, such that
X(l)=-1forl=1i,i+1,....,5—1,7and X(: —1) =1, X(j+ 1) = 1. (It is possible
to have j < i, since we are working modulo n.) Clearly all runs are disjoint. We can
define the set R(X) of all runs in X. By convention, the all-minuses configuration is
not considered a run, since it has no bordering pluses.

Suppose that r = [i, j]. The length of the run r, denoted by ¢(r), equals the number
of minuses in the run. We will refer to a run of length ¢ as an /-run. A 1-run will also
be called a singleton and a 2-run will also be called a pair. Then the potential function
1 is given by

V(X)) = [{i: X0G)==1} 4+ 8- 1R(X)|+7v-[{r e R(X):r is a singleton} |
+ - [{reR(X):r is a pair}]|.



The parameters 5, v and 0 will be set below. Note that a singleton is a barrier to
absorption since a singleton minus cannot be changed to a plus in one step. The singleton
must first become part of a longer run. So we set v > 0 to penalise singletons. On the
other hand, pairs give the opportunity for two minuses to be changed at one step. Thus
pairs are helpful, and we reflect this by setting 6 < 0. We also set § > 0. Clearly
Y(X*) = 0 for any values of 3, 7, ¢ since X*(¢) = 1 for all i, and R(X*) = (. For
¥ to be a well-defined potential function, we must also show that ¢(X) > 0 whenever
X # X*. This is achieved if —2 < § < 0, since there can be at most half as many pairs
in X as there are minuses.

3.1 The analysis

We now analyse the Pavlov process using the potential function ¢. Let X, € {1, —1}V
be fixed. Clearly if Xy = X* there is nothing to prove. So, suppose that X, contains
at least one minus. Let X; be the result of performing one step of the process from
starting point Xy. We will find an upper bound for E [¢)(X;) — ¥(X,)].

Note that each edge overlaps at most one run in R(Xj), and that there are ¢ + 1

3

edges which overlap a given f-run. Specifically, if r = [i, j] then these ((r) 4+ 1 edges are

(=14}, {j,j+1}).

Let L(Xy) be defined by
L(Xo)= Y (Ur)+1).

TGR(XU)

Then L(X,) equals the number of edges which overlap some run in Xy. Denote by
v(Xo, e) the value of ¥(X;) — ¥(Xy) given that the edge e has been chosen by the
Pavlov process in step 1. Let r be an /-run and let

o(r)= > w(Xge).

e overlaps r

By definition we have

BU(X) - 6(X0)] = 5 3" o(Xo.e),

eck
since there are n edges in GG. When X contains both pluses and minuses we can also
state that )
E[p(X) - (Xl =~ >, o).

reR(Xo)

since runs are disjoint and an edge which does not overlap a run makes no change to
Xo. Let M = M(Xy) be defined by

M:max{é(j)(:)_l |rER(XU)}.



That is, M is the maximum over all runs of the average contribution of each edge in that
run. The way in which M will be used is described below. We ignore two configurations:
the all-pluses configuration X*, and the all-minuses configuration. The latter is treated
separately in Section 3.2.

Lemma 1 Suppose that Xy contains both pluses and minuses. With M, 1 and L defined
as above, we have

ML(X,)

E [(X;)] < (1 + W

) (Xo).

Proof. From above, we have

E[y(X1) —o(Xo)] =

IN

We can rearrange this inequality to give

ML(Xo) _ ML(Xo)
MR <1+ w(XU)nM(XO)

as stated. O

E [¢(X1)] < 9(Xo)

Suppose that the values of 5, v, § could be set to ensure that M < 0. Then, by
Lemma 1, the value of ¢ decreases in expectation at every step. This will be used in
Section 3.2 to calculate an upper bound for the absorption time of the Pavlov process.

Let r = [i, j] be a run. Then there are two outer rim edges associated with r, namely
{i —1,i} and {j,7 4+ 1}. If r has length at least 3 then there are also two inner rim
edges associated with r, namely {i,i + 1} and {j — 1,j}. If r is a singleton then there
are no inner rim edges, while if r is a pair [¢,7 + 1] then there is a unique inner rim edge
{i,i+ 1}. All other edges which overlap r are strictly inside the interval [4, j|, and we
call these edges internal edges.

Suppose that there are two runs in R(X,) which are only separated by a single plus,
i.e. [4,j] and [j + 2, k] for some 4, j, k. Then there are two edge choices {j,j + 1} and
{j + 1,7 4+ 2} which cause the two runs to merge (note that these edges are both outer
rim edges for the runs which they overlap). For simplicity, we will first assume that there
are no edge choices which cause runs to merge. That is, in Lemma 2 we assume that
all adjacent runs in R(Xy) are separated by at least two pluses. By carefully choosing
values for 3, v and § in this case, we show that M is negative: specifically M = —1/14.
In Lemma 3 we return to configurations which contain adjacent runs separated by a
single plus.



Before presenting Lemma 2, we make a few general remarks. When all adjacent runs
are separated by at least two pluses, choosing an outer rim edge will always cause r to
increase in length by 1, introducing an extra minus. Similarly, choosing an inner rim
edge will always cause r to decrease in length by 2, changing two minuses to pluses.
When the length of r is small there might be additional effects from these four edges,
as we shall see. When any internal edge is chosen, the run r is split into two runs which
are separated by two pluses. If the two runs have length £ and ¢ we say that this edge
choice produces a (k, £)-split.

We can now prove that M is negative for certain fixed values of 3, v and ¢, when X
contains both pluses and minuses and all adjacent runs are separated by at least two
pluses.

Lemma 2 Let X contain both pluses and minuses, and suppose that adjacent runs in
Xy are separated by at least two pluses. Then setting = 27/14, v =4/7 and 6 = —4/7
we obtain M = —1/14.

Proof. We will consider runs 7 of different lengths in turn, and calculate o (r)/(¢(r) +1)
in each case. Then M is the maximum of these values.

A 1-run. Let r be a 1-run [7,i]. The only edges which overlap r are the outer rim edges
{i —1,i} and {i,i+ 1}. When either of these edges are chosen, a vertex adjacent to
the 1-run changes from a plus to a minus. This introduces an extra minus and changes
a l-run (singleton) to a 2-run (a pair), without changing the total number of runs.
Therefore

a(r)

1

A 2-run. Suppose that r = [i,i + 1]. There are 3 edges which overlap r. When either
of the outer rim edges {i — 1,7} or {i + 1,7 + 2} are chosen the 2-run becomes a 3-run,
introducing an extra minus and deleting a pair. There is only one inner rim edge, the
edge {7,7 + 1}. When this edge is chosen, both minuses in the pair become pluses. Here
we lose two minuses and delete a pair, decreasing the number of runs by 1. Adding
these contributions and dividing by 3 we find that

o(r) 2(1-6)—(2+8+6)  B+30 1 5
3 3 I 2)

A 3-run. Suppose that r = [i,i + 2]. There are 4 edges which overlap r, namely the
two outer rim edges and the two inner rim edges. Choosing an outer rim edge turns the
3-run into a 4-run, introducing an extra minus. Choosing an inner rim edge turns the
3-run into a 1-run. Hence

o(r) 2+2(=2+49y) -1+y_ 3
4 4 214

(3)



A 4-run. Suppose that r = [i,i + 3] for some i. There are 5 edges which overlap
r. Choosing an outer rim edge causes r to increase in length by 1, introducing a new
minus. Choosing an inner rim edge causes the length of r to decrease by 2: in this case
this introduces a new pair. Finally, there is one internal edge {i + 1,7+ 2}. Choosing
this edge produces a (1, 1)-split. This introduces two singletons and increases the total
number of runs by 1, while removing two minuses. Adding these contributions together
and dividing by 5, we obtain

o(r) _24+2(-2+40)+(-2+8+2y)  —4+B8+2y+25 _ 29 n

d d d 70

A 5-run. Let r = [i,i + 4] for some i. There are six edges which overlap r. Choosing
an outer rim edge causes r to increase in length by 1. Choosing an inner rim edge
causes the length of r to decrease by 2. There are two internal edges, {i + 1,7+ 2}
and {i + 2,74 3}. Choosing either of these edges produces a (1,2)-split, deleting two
minuses, introducing a singleton and a pair, as well as increasing the number of runs
by 1. Adding the contributions from all of these edges together, and dividing by 6, we

obtain
o(r) 2—4+2(=2484+7y+6) _—3+B+y+d_ 5 (5)

6 6 3 14

A 6-run. Let r = [i,7 + 5]. There are 7 edges which overlap r. If an outer rim edge is
chosen then r increases in length by 1. If an inner rim edge is chosen then r decreases in
length by 2. There are 3 internal edges. Choosing {i + 1,7 + 2} or {i + 3,7 + 4} produces
a (1, 3)-split, decreasing the number of minuses by 2 while increasing the number of
singletons and the number of runs by 1. Finally, choosing the edge {i + 2,7 + 3} produces
a (2, 2)-split, decreasing the number of minuses by 2, increasing the number of runs by
1 and the number of pairs by 2. Combining this information we find that

o(r) 2—442(—24+08+7v)+(—2++20) —-8+35+2y+20 31
7T 7 - 7 =z O

An (-run, where ¢ > 7. Now suppose that r = [i,j] is an f-run for some ¢ > 7.
Choosing either of the two outer rim edges causes r to increase in length by 1. Choosing
either of the two inner rim edges causes r to decrease in length by 2. There are 4 internal
edges which need careful analysis. Choosing either {i + 1,7+ 2} or {j — 2,5 — 1} pro-
duces a (1, ¢ — 3)-split, introducing a singleton and increasing the number of runs by 1,
while decreasing the number of minuses by 2. Similarly, choosing either {i + 2,7 + 3} or
{j — 3,j — 2} produces a (2, ¢ — 4)-split, introducing a pair and increasing the number



of runs by 1, while decreasing the number of minuses by 2. There are ¢ —7 other internal
edges which split r into pairs of runs, each of length at least 3. In each case, the number
of minuses decreases by 2 while the number of runs increases by 1, but the numbers of
singletons and pairs are unchanged. We obtain

o(r)  2=44+2(2484+7)+2(2++0)+UL-T7)(-24+5)
(+1 (+1
B 48 — 6 — 2y — 26
= b-2- (+1
1 12 -
TR Ty ™)

Now M is equal to the maximum of the right hand sides of (1)-(7). It is easy to
verify that the maximum is —1/14, as stated. 0

For the remainder of this section, the values of 8 = 27/14, v = 4/7 and § = —4/7
are fixed. These values were chosen without explanation for use in the proof of Lemma 2
above. They were originally derived by setting 3 =2 —1n, v =1/2+n and 6 = —v, and
choosing 7 to minimize M. The interested reader can easily verify that n = 1/14 is the
optimal choice.

We now show that the value M = —1/14 can still be used in Lemma 1 even when
the initial configuration has adjacent runs which are separated by a single plus.

Lemma 3 Suppose that Xy € {1,—1} contains both pluses and minuses. Then the
conclusion of Lemma 1 holds with

1
M=—-—.
14
Proof. By Lemma 2, we have M = —1/14 whenever no two adjacent runs in X, are

separated by a single plus. So now suppose that there are exactly s distinct values
i € {0,...,n—1} such that X,(i — 1) = —1, Xo(i) = 1 and X,(i + 1) = —1, where
s > 1. We will call such an i a rim vertex. Define a new cycle G' = (V', E’) from G by
splitting the vertex 7 into two new vertices, ' and ", for each rim vertex i. Thus G’ is a
graph on n—+ s vertices. Let the edges of G' be obtained from the edges of G by deleting
the edges {i — 1,4}, {i,i + 1} and adding the edges {i — 1,4}, {i',"}, {¢/',i+ 1}, for
each rim vertex 7. Thus G' forms a cycle on n + s vertices. Construct the configuration
Xo' € {1, —1}V/ from Xy by replacing the single plus at 7 by two pluses on ¢, i, for
each rim vertex ¢. That is, let

X/(j) = Xo(y) if j is unprimed,
oV)= 1 otherwise.



By definition, X' has no two adjacent runs separated by a single plus. Note also that
L(Xy') = L(Xy). Let X;' be the result of running the Pavlov process for one step from
Xy'. Combining Lemma 1 and Lemma 2, we see that

L(Xy')

E (X)) —¢(Xo)] < Tt )

Suppose that we could show that

Z v(Xy',e) > Z v(Xo, €). (8)

ec E(G") ec E(G)

Then we would have

E[y(X)) —¢(X)] = s Z v(Xo', e
eCE(G")
S v(Xo, €)

n+s e€E(G)

AV

n

= "+ SEW(Xl) - w(Xo)]-

From this we could conclude that

B - u(X0)] < BU(XY) - ¢(X0)]
o _ LXY)
—  1d(n+s)
_ LX)
T 14(n+s)

Multiplying this inequality through by (n+ s)/n proves the lemma. Hence it suffices to
establish (8).

It is not difficult to see that any edge which does not overlap a rim vertex in X
makes the same contribution in both the primed and unprimed settings. For these edges
e belong to both E(G) and E(G'), and

v(Xo',e) = v(Xy, ).
Therefore, to prove (8) it suffices to prove that Y’ > Y for all rim vertices i, where
Y = u(Xo, {i — 1,i}) + v(Xo, {3,i + 1})

and

Y’ = 'U(X()’, {Z — 1, Zl}) + 'U(X()’, {Z‘“./ 1+ 1})
(Clearly the edge {i',4"} makes no contribution to E [¢(X;") — ¢(Xy")].) Let r; and ry
be the two runs which are separated by i in X, and define a and b by

a=|{j€e{l,2}|r; is a singleton} | and b= |{je{l,2}|r; is a pair}|.



Then 0 < a + b < 2. Consider choosing either {7 — 1,#'} or {i",7 + 1} for X;'. Clearly
either choice will cause a minus to be introduced. For a of these choices a singleton is
removed and a pair is created, while for b of these choices a pair is removed. Therefore

Y'=2—ay+ad — bo.

Now consider choosing either {i — 1,7} or {i,7+ 1} in X. The expected change of 9 is
identical for either choice. Choosing either of these edges introduces a minus, decreases
the number of runs by 1, and deletes all singletons or pairs which are present in Xj.
The merged run which is created has length ¢(r;) + ¢(r2) + 1 > 3, so no singletons or
pairs are created. Therefore

Y =2(1 — 8 — ay— bf).
Hence, using the values of 3, v and ¢ we obtain
V'-Y =28+4a(y+0d)+b >2(5+0) >0,

proving the lemma. 0

3.2 Bounding the absorption time

We have fixed § = 27/14, v = 4/7, 6 = —4/7. Recall that L(Xo) = }_, cp(x, (¢(r) +1).
Combining Lemmas 1, 2, 3 we obtain

Bl < (1- ) u(x), )

for all Xy which contain both pluses and minuses. We need the following result.

Lemma 4 Let X € {1, —1}V and let 1, L be as defined above. Then

TL(X)

V() < —

if X contains both pluses and minuses, while

(11)
for all X # X*.

Proof. First suppose that X contains both pluses and minuses. Let 1(r) denote the
potential of the run r, for all » € R(X). That is,

1+ 5+ ifrisa singleton,
Y(r) =<2+ B+4§ ifrisa pair,
((r)+p  otherwise.

10



Clearly

reR(X)

It is not difficult to check that the inequality

7
< —
— 4
holds, with equality if and only if 7 is a singleton. Hence

ox) = Y e < Y 0D THA)

4
reR(X) reR(X)

as stated. Now L(X) denotes the number of edges which overlap some run in X. Since
there are at exactly n edges in G, it follows that

n
V(X)) <

whenever X contains both pluses and minuses. Since the all-minuses configuration has
potential n, this proves the upper bound in (11). Finally, note that

o) > T

with equality if and only if 7 is a pair. Therefore the lowest potential of all configurations
with both minuses and pluses is obtained on any configuration which contains a unique
run, this unique run being a pair. The all-minuses configuration has potential n, but we
have assumed that n is at least 4. This proves the lower bound in (11). 0

Proof of Theorem 1. Combining (9) and inequality (10) of Lemma 4, we can conclude
that

2
EyX) < ([1-— X 12
) < (1- 4o ) % (12)
for all X, which contain both pluses and minuses. However, (12) also holds for the

all-minuses configuration, as follows. Let X be the all-minuses configuration, defined by
Xo(i) = —1 for all i. Let X, be the result of running the Pavlov process for one step

from Xy. No matter which edge is chosen, the number of minuses decreases by 2 and the
number of runs increases from 0 to 1. Therefore E [@/)()N(l) - 1/)()20)} =pf—-2=-1/14.

Since 1(Xy) = n, we conclude that

E [1/)(5(1)} = <1 - ﬁ) ¥(Xo) < <1 - 49%) ¥ (Xo),

as claimed.

11



So now let Xg € {1, —1}" satisfy Xy # X*. Starting from Xy, run the Pavlov process
for ¢ steps and let the resulting state be X;. By applying (12) iteratively ¢ times we

obtain . .
2 2 7
B < (1- ) v < (1-2) &

using the first statement of Lemma 4 for the last inequality. Let ¢ > 0 be given. Let

v = 47¢/14. Whenever
t> 19 lo n
JR— n JE—
-2 & 4v

we have E[¢(X;)] < v. Using (11), any nonzero value of ¢» must be at least 47/14.
Applying Markov’s Lemma, we have

47 14v
14

Prob [1(X;) # 0] = Prob {w(xt) >l ==

This completes the proof. 0

4 Exponential absorption on the complete graph

In this section we prove Theorem 2, showing that the absorption time of the Pavlov
process is exponential on the complete graph K,.

We will use the notation X; € {1,—1}" to refer to a configuration after ¢ steps of
the Pavlov process. Let N; be the number of nodes in X; with label 1. Clearly X; is
equal to the all-pluses absorbing state if and only if N; = n. The basis of our proof
is the observation that the process NV; is simple to analyse, even if the process X; is
not. Let p;, ¢; denote the labels of the two nodes chosen at step t. Then the transition
probabilities of NV; are given by the following rule:

3

N, —1 if pug; = —1 (probability Ny(n — N;)/(%))
Nipr=49 M if py = ¢ = 1 (probability (]\2&)/(3))’
N, +2 if p, =g = —1 (probability ("3V*)/ ().

Consider the “speed-up” (M;) of the chain (N;), which only makes transitions that
change the state:

Mo — M, — 1 with probability 2M;/(n + M; — 1),
LTl M, + 2 with probability (n — M, — 1)/(n 4+ M, — 1).

If My = Ny, then the time for M, to hit n is clearly at most that for N;. We will now
show that it takes exponentially long for M; to reach n. Consider the chain (Q;) with
transition probabilities given by

Qo = Q: — 1 with probability 3/4,
1T Qp 42 with probability 1/4.

12



If Qo = My > 3n/5 then (M,;) is stochastically dominated by (Q;) as long as M; > 3n/5.
Let V(k) = a*, where a = (v/13 — 1)/2. Note that ¢ > 1 and that a satisfies
3a7' + 1a? = 1. Then

B(V(Q) | V(@) = 0% + 5 a9 = a® = V(Q)

so V(Q) is a martingale.

Suppose that Qo is [3n/5] or [3n/5] + 1. Let T =min{t | Q; <3n/5or Q; > n }.
It is straightforward to show that Prob(Qr > n) < a=?"°. The analysis is in Exam-
ple 4.1 of [3]. We include it here for completeness. First, since Prob(T < co) = 1 and
V(Qumin(r,py)| < @™ for all ¢, we have EV(Qr) = EV(Qp). This follows the stopping
theorem for bounded martingales, see, for example, (3.6) of [3]. Now V(Q) < a*/>+2,
so EV(Qr) < a®/5*2, Also,

EV(Qr) > a®/°' . Prob(Qr < 3n/5) + a™ - Prob(Qr > n),

since Qr < 3n/5 implies Qr = [3n/5] —1 > 3n/5 — 1. Hence

a3n/5+2 _ a3n/571

Prob(Qr > n) <

an — g3n/5-1
which is at most a=2"/° as long as n is sufficiently large (n > 23 suffices).

We conclude that every time (M) enters the interval [3n/5,n — 1] from below, the
probability that it exits out the top of the interval (rather than the bottom) is at most
a~?"/>_ Thus, the probability that the chain reaches absorption in as few as (1.1)" visits

to the region is at most
(2% x 1.1)" = o(1).

This proves Theorem 2.

5 Other topics

Several issues remain for further study. A natural extension of our results would be
to investigate the Pavlov process for other families of graphs. Two other cases seem
particularly interesting: degree-bounded trees and random graphs. Another possible
ingredient to our model is random noise (or player mistakes). The importance of this
parameter has been previously recognized in [9].
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