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preemptive s
heduling, wherein ma
hines 
an suspend work on operations, swit
h toother operations, and later resume the suspended operations (if this is not allowed,we have the non-preemptive s
enario, whi
h we take as the default); in su
h a 
ase,all operation lengths may be taken to be one. Even this spe
ial 
ase with n = m = 3is NP-hard, as long as the input is en
oded 
on
isely [16, 22℄. We present furtherimproved approximation fa
tors for preemptive s
heduling and related spe
ial 
asesof job-shop s
heduling.Formally, a job-shop s
heduling instan
e 
onsists of jobs J1; J2; : : : ; Jn, ma
hinesM1;M2; : : : ;Mm, and for ea
h Jj , a sequen
e of �j operations (Mj;1; tj;1); (Mj;2; tj;2);: : : ; (Mj;�j ; tj;�j ). Ea
h operation is a (ma
hine, pro
essing time) pair: ea
h Mj;krepresents some ma
hine Mi, and the pair (Mj;i; tj;i) signi�es that the 
orrespondingoperation of job Jj must be pro
essed on ma
hine Mj;i for an uninterrupted integralamount of time tj;i. No ma
hine 
an pro
ess more than one operation at a time; theoperations of ea
h given job must be s
heduled in the given order. (For ea
h job Jj ,the waiting time from the 
ompletion of an operation (Mj;i; tj;i) until the s
hedulingof (Mj;i+1; tj;i+1) is allowed to be any non-negative amount.) The problem that wefo
us on throughout is to 
ome up with a s
hedule that has a small makespan, forgeneral job-shop s
heduling and for some of its important spe
ial 
ases.1.1. Earlier work. As des
ribed earlier, even very restri
ted spe
ial 
ases ofjob-shop s
heduling are NP-hard. Furthermore, the problem seems quite intra
tablein pra
ti
e, even for relatively small instan
es. Call a job-shop instan
e a
y
li
 if nojob has more than one operation that needs to run on any given ma
hine. A singleinstan
e of a
y
li
 job-shop s
heduling 
onsisting of 10 jobs, 10 ma
hines and 100operations resisted attempts at exa
t solution for 22 years, until its resolution byCarlier & Pinson [6℄. More su
h exa
t solutions for 
ertain instan
es (with no morethan 20 jobs or ma
hines) were 
omputationally provided by Applegate & Cook, whoalso left open the exa
t solution of 
ertain a
y
li
 problems, e.g., some with 15 jobs,15 ma
hines, and 225 operations [3℄. The reader is referred to Martin & Shmoys fora re
ent approa
h to 
omputing optimal s
hedules for su
h problems [14℄.Thus, eÆ
ient exa
t solution of all instan
es with, say, 30 jobs, 30 ma
hines,and 900 operations seems quite beyond our rea
h at this point; an obvious nextquestion is to look at eÆ
ient approximability. De�ne a �-approximation algorithm asa polynomial-time algorithm that always outputs a feasible s
hedule with a makespanof at most � times optimal; � is 
alled the approximation guarantee. A negativeresult is known: if there is a �-approximation algorithm for job-shop s
heduling with� < 5=4, then P = NP [23℄.There are two simple lower bounds on the makespan of any feasible s
hedule:Pmax, the maximum total pro
essing time needed for any job, and �max, the maximumtotal amount of time for whi
h any ma
hine has to pro
ess operations. Re
all thede�nition of a
y
li
 job-shop s
heduling given at the beginning of this subse
tion.For the NP-hard spe
ial 
ase of a
y
li
 job-shop s
heduling wherein all operationshave unit length, a breakthrough was a
hieved by Leighton, Maggs and Rao in [11℄,showing that a s
hedule of makespan O(Pmax+�max) always exists! (See Se
tions 6.1and 6.2 of S
heideler [17℄ for a shorter proof of this result.) Su
h a s
hedule 
an alsobe 
omputed in polynomial time [12℄. Feige & S
heideler have presented many newadvan
es in a
y
li
 job-shop s
heduling [8℄.What about upper bounds for general job-shop s
heduling? It is not hard tosee that a simple greedy algorithm, whi
h always s
hedules available operations onma
hines, delivers a s
hedule of makespan at most Pmax�max; one would however like2



to aim for mu
h better. Let � = maxj �j denote the maximum number of operationsper job, and let pmax be the maximum pro
essing time of any operation. By invokingideas from [11, 19, 20℄ and by introdu
ing some new te
hniques, good approximationalgorithms were developed in [21℄. Their deterministi
 approximation bounds wereslightly improved in [18℄ to yield the following proposition. (To avoid problems withsmall positive numbers, hen
eforth let logx denote log2 x if x � 2 and 1 if x < 2;similarly, let log logx denote log2 log2 x if x � 4 and 1 if x < 4.)Proposition 1.1. ([21, 18℄) There is a deterministi
 polynomial-time algorithmthat delivers a s
hedule of makespanO((Pmax +�max) � log(m�)log log(m�) � log(minfm�; pmaxg))for general job-shop s
heduling. If we repla
e m by n in this bound, then su
h as
hedule 
an also be 
omputed in RNC. This is a �-approximation algorithm with� = O(log(m�) log(minfm�; pmaxg)= log log(m�)). See [21, 9℄ for further results onapproximating some spe
ial 
ases of shop s
heduling that are not dis
ussed here.1.2. Our results. Our �rst result improves Proposition 1.1 by a doubly loga-rithmi
 fa
tor and provides further improvements for important spe
ial 
ases.Theorem 1.2. There are the following deterministi
 algorithms for general job-shop s
heduling, delivering s
hedules of makespan O((Pmax +�max) � �):(a) a polynomial-time algorithm, with� = log(m�)log log(m�) � � log(minfm�; pmaxg)log log(m�) � ;and if we repla
e m by n in this bound, then su
h a s
hedule 
an also be
omputed in NC,(b) a polynomial-time algorithm, with� = logmlog logm � log(minfm�; pmaxg); and(
) an NC algorithm, with� = logmlog logm � log(minfn�; pmaxg):Thus, part (a) improves on the previous approximation bound by a doubly loga-rithmi
 fa
tor. The impa
t of parts (b) and (
) is best seen for preemptive s
heduling,wherein pmax = 1, and for the related situations where pmax is \small". Our moti-vation for fo
using on these 
ases is twofold. First, preemptability is known to be apowerful primitive in various s
heduling models, see, e.g., [4℄. Se
ond, the result ofLeighton, Maggs and Rao shows that preemptability is powerful for a
y
li
 job-shops(in the sense that there is a s
hedule of makespan O(Pmax + �max) in the preemp-tive 
ase). Re
all that job-shop s
heduling is NP-hard even when n = m = 3 andpmax = 1. Parts (b) and (
) of Theorem 1.2 show that, as long as the number ofma
hines is small or �xed, we get very good approximations. (It is trivial to get anapproximation fa
tor of m: our approximation ratio is O(logm= log logm) if pmaxis �xed.) Note that for the 
ase in whi
h pmax is small, part (
) is both a deran-domization and an improvement of the previous-best parallel algorithm for job-shops
heduling (see Proposition 1.1). 3



We further explore the issue of when good approximations are possible, on
e againwith a view to generalizing the result of Leighton, Maggs and Rao [11℄; this is doneby the somewhat-te
hni
al Theorem 1.3. In the statement of the theorem, \withhigh probability" means \with probability at least 1 � �; for a positive 
onstant �.The failure probability � 
an be made arbitrarily small (exponentially small in thesize of the problem instan
e) by repeating the algorithm many times. Theorem 1.3shows that if (a) no job requires too mu
h of any given ma
hine for pro
essing, orif (b) repeated uses of the same ma
hine by a given job are well-separated in time,then good approximations are possible. Say that a job-shop instan
e is w-separatedif every distin
t pair ((Mj;`; tj;`); (Mj;r; tj;r)) of operations of the same job with thesame ma
hine (i.e., every pair su
h that Mj;` =Mj;r) has j`� rj � w.Theorem 1.3. There is a randomized polynomial-time algorithm for job-shops
heduling that, with high probability, delivers a s
hedule of makespan O((Pmax +�max) � �), where(a) if every job needs at most u time units on ea
h ma
hine then� = log ulog logu � � log(minfm�; pmaxg)log logu � ;(b) if the job-shop instan
e is w-separated and pmax = 1 then� = 1 if w � log(Pmax +�max)=2;� = log(Pmax +�max)w log(log(Pmax +�max)=w) ; otherwise.Part (a) of Theorem 1.3 shows quantitatively the advantages of having multiple
opies of ea
h ma
hine; in su
h a 
ase, we 
an try to spread out the operations of ajob somewhat equitably to the various 
opies. Part (b) of Theorem 1.3 shows that ifwe have some (limited) 
exibility in rearranging the operation sequen
e of a job, thenit may pay to spread out multiple usages of the same ma
hine.1.3. Main 
ontributions. Most of our results rely on probabilisti
 ideas; inparti
ular, we exploit a \random delays" te
hnique due to [11℄. We make four 
ontri-butions, whi
h we �rst sket
h in general terms. The rough idea behind the \randomdelays" te
hnique is as follows. We give ea
h job a delay 
hosen randomly from a suit-able range and independently of the other jobs, and imagine ea
h job waiting out thisdelay and then running without interruption; next we argue that, with high probabil-ity, not too many jobs 
ontend for any given ma
hine at the same time [11, 21℄. Wethen resolve 
ontentions by \expanding" the above \s
hedule"; the \low 
ontention"property is invoked to argue that a small amount of su
h expansion suÆ
es. The ap-proa
h of [21℄ to this \expansion" problem is as follows. First, they present an upperbound on the maximum amount of 
ontention on any ma
hine at any step, whi
h isshown to hold with high probability. Suppose we are given su
h a s
hedule, in whi
hat most s operations 
ontend for any ma
hine at any time. If all operations are of thesame length, this 
an be 
onverted into a valid s
hedule by an s-fold expansion of ea
htime step. However, the operation lengths may be disparate. But we may round alloperation lengths up to the nearest power of two; thus, there will only be O(log pmax)operation lengths. The approa
h of [21℄ is then to 
arefully de
ompose the s
hed-ule into 
ertain intervals su
h that within ea
h interval, all operation lengths are thesame. These, along with some other ideas, 
onstitute the \expansion" approa
h of[21℄. 4



Our �rst 
ontribution is a better 
ombinatorial solution to the above expansionproblem, whi
h leads to a smaller expansion than that of [21℄. In parti
ular, we donot handle di�erent operation lengths separately, but show a way of 
ombining them.The se
ond 
ontribution shows that a relaxed notion of \low 
ontention" suÆ
es:we do not require that the 
ontention on ma
hines be low at ea
h time step. The�rst 
ontribution helps to prove Theorem 1.2(a); parts (b) and (
) of Theorem 1.2make use of the se
ond 
ontribution. We de-randomize the sequential formulationsusing a te
hnique of [2℄ and then parallelize. A simple but 
ru
ial ingredient ofTheorem 1.2 is a new way to stru
ture the operations of jobs in an initial (infeasible)s
hedule; we 
all this well-stru
turedness, and present it in Se
tion 2. This notionis our third 
ontribution. Finally, Theorem 1.3 
omes about by introdu
ing randomdelays and by using the Lov�asz Lo
al Lemma (LLL) [7℄. Although this is also donein [11℄, our improvements arise from a study of the 
orrelations involved and by usingTheorem 1.2(a). This study of 
orrelations is our fourth 
ontribution. The rest of thispaper is organized as follows. Se
tion 2 sets up some preliminary notions, Se
tion 3presents the proof of Theorem 1.2, and Theorem 1.3 is proved in Se
tion 4.2. Preliminaries. For any non-negative integer k, we let [k℄ denote the setf1; 2; : : : ; kg. The base of the natural logarithm is denoted by e as usual and, for
onvenien
e, we may use exp(x) to denote ex.As in [21℄, we assume throughout that all operation lengths are powers of two.This 
an be a
hieved by multiplying ea
h operation length by at most two. Thisassumption on operation lengths will only a�e
t our approximation fa
tor and runningtime by a 
onstant fa
tor. Thus, Pmax, �max and pmax should be repla
ed by someP 0max � 2Pmax, �0max � 2�max, and p0max � 2pmax respe
tively, in the sequel. Wehave avoided using su
h new notation, to retain simpli
ity.2.1. Redu
tions. It is shown in [21℄ that, in deterministi
 polynomial time, we
an redu
e the general shop-s
heduling problem to the 
ase where (i) pmax � n�, andwhere (ii) n � poly(m;�), while in
urring an additive O(Pmax + �max) term in themakespan of the s
hedule produ
ed. The redu
tion (i) also works in NC. (Of the tworedu
tions, (ii) is more involved; it uses, e.g., an algorithm due to [20℄.)Thus, for our sequential algorithms we assume that n � poly(m;�) and thatpmax � poly(m;�); while for our NC algorithms we assume only that pmax � n�.2.2. Bounds. We use the following bounds on the expe
tation and tails of dis-tributions.Fa
t 2.1. [Cherno�, Hoe�ding℄ Let X1; X2; : : : ; X` 2 [0; 1℄ be independent ran-dom variables with X :=PiXi. Then for any Æ > 0, E[(1 + Æ)X ℄ � eÆE[X℄.We de�ne G(�; Æ) := (eÆ=(1+Æ)1+Æ)�: Using Markov's inequality and Fa
t 2.1, weobtain Cherno� and Hoe�ding's bounds on the tails of the binomial distribution (see[15℄).Fa
t 2.2. [Cherno�, Hoe�ding℄ Let X1; X2; : : : ; X` 2 [0; 1℄ be independent ran-dom variables with X :=PiXi and E[X ℄ = �. Then for any Æ > 0, Pr[X � �(1+Æ)℄ �G(�; Æ).2.3. Random delays. Our algorithms use random initial delays whi
h weredeveloped in [11℄ and used in [21℄. A B-delayed s
hedule of a job-shop instan
e is
onstru
ted as follows. Ea
h job Jj is assigned a delay dj in f0; 1; : : : ; B � 1g. In theresultingB-delayed s
hedule, the operations of Jj are s
heduled 
onse
utively, startingat time dj . A random B-delayed s
hedule is a B-delayed s
hedule in whi
h the delayshave been 
hosen independently and uniformly at random from f0; 1; : : : ; B�1g. Our5



algorithms s
hedule a job-shop instan
e by 
hoosing a random B-delayed s
hedulefor some suitable B, and then expanding this s
hedule to resolve 
on
i
ts betweenoperations that use the same ma
hine at the same time.For a B-delayed s
hedule S, the 
ontention, C(Mi; t), is the number of operationss
heduled on ma
hineMi in the time interval [t; t+1). (Re
all that operation lengthsare integral.) For any job Jj , de�ne the random variableXi;j;t to be 1 if some operationof Jj is s
heduled on Mi in the time interval [t; t + 1) by S, and 0 otherwise. Sin
eno two operations of Jj 
ontend for Mi simultaneously, C(Mi; t) = Pj Xi;j;t. If thedelays are 
hosen uniformly at random and B � �max, then E[Xi;j;t℄ is at most thetotal pro
essing time of Jj onMi divided by �max. Thus, E[C(Mi; t)℄ =Pj E[Xi;j;t℄ ��max=�max = 1. We also note that the random variables fXi;j;t j j 2 [n℄g are mutuallyindependent, for any given i and t. We re
ord all this as follows.Fa
t 2.3. If B � �max and S is a random B-delayed s
hedule then for anyma
hine Mi and any time t, C(Mi; t) = Pj Xi;j;t, where the 0-1 random variablesfXi;j;t j j 2 [n℄g are mutually independent. Also, E[C(Mi; t)℄ � 1.2.4. Well-stru
turedness. Re
all that all operation lengths are assumed to bepowers of two. We say that a delayed s
hedule S is well-stru
tured if for ea
h k, alloperations with length 2k begin in S at a time instant that is an integral multipleof 2k. We shall use the following simple way of 
onstru
ting su
h s
hedules fromrandomly delayed s
hedules. First 
reate a new job-shop instan
e by repla
ing ea
hoperation (Mj;`; tj;`) by the operation (Mj;`; 2�tj;`). Suppose S is a random B-delayeds
hedule for this modi�ed instan
e, for some B; we will 
all S a padded random B-delayed s
hedule. From S, we 
an 
onstru
t a well-stru
tured delayed s
hedule, S 0,for the original job-shop instan
e: simply insert (Mj;l; tj;l) with the 
orre
t boundaryin the slot assigned to (Mj;l; 2 � tj;l) by S. S0 will be 
alled a well-stru
tured randomB-delayed s
hedule for the original job-shop instan
e.3. Proof of Theorem 1.2. In this se
tion we prove Theorem 1.2. In Se
tion 3.1we give a randomized polynomial-time algorithm that proves part (b) of the theorem.In Se
tion 3.2 we improve the algorithm to prove part (a). Finally we dis
uss thederandomization and parallelization of these algorithms in Se
tion 3.3. Throughout,we shall assume upper bounds on n and pmax as des
ribed in Se
tion 2.1; this explainsterms su
h as log(minfm�; pmaxg) in the bounds of Theorem 1.2. Given a delayeds
hedule S, de�ne C(t) := maxi C(Mi; t).Lemma 3.1. There is a randomized polynomial-time algorithm that takes a job-shop instan
e and produ
es a well-stru
tured delayed s
hedule whi
h has a makespanL � 2(Pmax +�max). With high probability, this s
hedule satis�es:(a) 8i 2 [m℄ 8t 2 f0; 1; : : : ; L� 1g; C(Mi; t) � �; and(b) PL�1t=0 C(t) � �(Pmax +�max),where � = 
1 log(m�)= log log(m�) and � = 
2 logm= log logm, for suÆ
iently large
onstants 
1; 
2 > 0.Proof. Re
all that all operation lengths are assumed to be powers of 2. LetB = 2�max and let S be a padded random B-delayed s
hedule of the new instan
e,as des
ribed in Se
tion 2.4. S has a makespan of at most 2(Pmax +�max). Let S 0 bethe well-stru
tured random B-delayed s
hedule for the original instan
e that 
an be
onstru
ted from S, as des
ribed in Se
tion 2.4. The 
ontention on any ma
hine atany time under S 0 is 
learly no more than under S. Thus in order to show that S 0satis�es (a) and (b) with high probability, it suÆ
es to show that S has this property.We will prove this now. 6



Part (a). The following proof is based on that of [21℄. Fix any positive integer k,and any Mi. For any set U = fu1; u2; : : : ; ukg of k units of pro
essing that need to bedone on Mi, let Collide(U) be the event that in S all these k units get s
heduled atthe same unit of time on Mi. It is not hard to see that Pr[Collide(U)℄ � (1=B)k�1.(If u1; : : : ; uk are from di�erent jobs then Pr[Collide(U)℄ � (1=B)k�1. Otherwise,Pr[Collide(U)℄ = 0.) Re
all that B = 2�max. Sin
e there are at most �2�maxk � ways of
hoosing U , we getPr[9t : C(Mi; t) � k℄ = Pr[9U : Collide(U)℄ � �2�maxk �(1=(2�max))k�1;and so Pr[9t : C(Mi; t) � k℄ � 2�max=k!. Thus,Pr[9t 9i : C(Mi; t) � k℄ � 2m�max=k!:But �max � n�pmax, whi
h by our assumptions in Se
tion 2.1 is poly(m;�). Sin
ed�e! > (m�)
1=2 for suÆ
iently large m or �, we 
an satisfy (a) with high probabilityif we 
hoose 
1 suÆ
iently large.Part (b). Let 
 = ��=2, where � is the desired 
onstant in the probability bound.Let the 
onstant 
2 in the de�nition of � be suÆ
iently large so that 
 > 1. Fix anyMi and t, and let � = E[C(Mi; t)℄. (By Fa
t 2.3, � � 1.) By Fa
t 2.1, with 1+ Æ = 
,E[
C(Mi;t)℄ � e(
�1)� � e(
�1):Hen
e, for any given t,E[
C(t)℄ = E[
maxi2[m℄ C(Mi;t)℄ � E[Xi2[m℄ 
C(Mi;t)℄ = Xi2[m℄E[
C(Mi;t)℄(3.1) � me
�1:Sin
e the fun
tion x 7! 
x is 
onvex, by Jensen's inequality we get that E[
C(t)℄ �
E[C(t)℄. If we 
hoose 
2 suÆ
iently large then 

 � me
�1. Combining theseobservations with bound (3.1), we get E[C(t)℄ � 
. By linearity of expe
tation,E[Pt C(t)℄ � 2
(Pmax +�max) and �nally, by Markov's inequality, we havePr[Xt C(t) > �(Pmax +�max)℄ � 2
=� = �:3.1. Proof of Theorem 1.2(b). Re
all that our goal is a polynomial-timealgorithm whi
h delivers a s
hedule with makespan O((Pmax + �max) � logmlog logm �log(minfm�; pmaxg)). Assume S is a delayed s
hedule satisfying the 
onditions ofLemma 3.1 with makespan L = O(Pmax+�max). We begin by partitioning the s
hed-ule into frames, i.e., time intervals f[ipmax; (i + 1)pmax); i = 0; 1; : : : ; dL=pmaxe � 1g.By the de�nition of pmax and the fa
t that S is well-stru
tured, no operation straddlesa frame. For example, see Figure 3.1.We 
onstru
t a feasible s
hedule for the operations performed under s
hedule S forea
h frame. Con
atenating these s
hedules yields a feasible s
hedule for the originalproblem. We give the frame-s
heduling algorithm where, without loss of generality,we assume that its input is the �rst frame.7



Let T be a rooted 
omplete binary tree with pmax leaves. For every node u of T ,let l(u) and r(u) be the labels, respe
tively, of the leftmost and rightmost leavesof the subtree rooted at u. We shall asso
iate the operations s
heduled during theframe with the nodes of T in a natural way. For i = 1; : : : ;m we de�ne Si(u) tobe those operations that are s
heduled on Mi by S for pre
isely the time interval[l(u); r(u) + 1); ea
h operation s
heduled by S in the �rst frame is in exa
tly oneSi(u). For example, see Figure 3.2. Let p(u) = (r(u)� l(u)+1) �maxi jjSi(u)jj, wherejjSi(u)jj denotes the 
ardinality of Si(u). p(u) is the amount of time needed to performthe operations asso
iated with u. For example, see Figure 3.3. Let the nodes of Tbe numbered as u1; u2; : : : in the preorder traversal of T . De�ne f(u1) = 0 and forj � 2, let f(uj) = Pk<j p(uk). For example, see Figure 3.4. The algorithm simplys
hedules the operations in Si(u) on ma
hine Mi 
onse
utively beginning at timef(u) + 1 and 
on
luding by the end of timestep f(u) + p(u). Let S 0 be the resultings
hedule. For example, see Figure 3.5. Note that our algorithm does not ne
essarilygive the same s
hedule as the algorithm of Shmoys, Stein and Wein. For instan
e, ouralgorithm produ
es a di�erent s
hedule than the one that their algorithm produ
eson the example given in [21℄. Part (b) of Theorem 1.2 follows from Lemma 3.1 andthe following lemma.Lemma 3.2. S 0 is feasible and has makespan at most Pu2T p(u), whi
h is atmost (1 + log2 pmax) �Ppmax�1j=0 C(j), where C(t) is the maximum 
ontention at timet under s
hedule S.Proof. By 
onstru
tion, no ma
hine performs more than one operation at a time.Suppose O1 and O2 are distin
t operations of job J s
heduled in the �rst frame.Assume O1 2 Si(u) and O2 2 Sj(v), where possibly i = j. Assume O1 
on
ludesbefore O2 begins under S; thus u and v are roots of disjoint subtrees of T and upre
edes v in the preorder traversal of T . Thus O1 
on
ludes before O2 begins in S 0and the new s
hedule is feasible.Clearly the makespan of S 0 is at most Pu2T p(u). Fix a node u at some heightk in T . (We take leaves to have height 0.) Then p(u) = 2kmaxi jjSi(u)jj. Sin
e themaximum number of jobs s
heduled at any time t on any ma
hine under S is C(t),we get that 8t 2 [l(u); : : : ; r(u)℄, maxi jjSi(u)jj � C(t). Thus,p(u) � 2kmaxi jjSi(u)jj � Xt2[l(u);:::;r(u)℄C(t):Sin
e ea
h leaf of T has (1 + log2 pmax) an
estors, the makespan of S 0 is at mostXu2T p(u) �Xu2T Xt2[l(u);:::;r(u)℄C(t) = (1 + log2 pmax) � pmax�1Xt=0 C(t):3.2. Proof of Theorem 1.2(a). Re
all that our goal is a polynomial-timealgorithm whi
h delivers a s
hedule with makespan O((Pmax + �max) � log(m�)log log(m�) �l log(minfm�;pmaxg)log log(m�) m). We give a slightly di�erent frame-s
heduling algorithm and showthat the feasible s
hedule for ea
h frame has makespan O(pmax� dlog(pmax)= log�e),where � = 
1 log(m�)= log log(m�) as in Lemma 3.1. Without loss of generality, weassume that � is a power of 2 (by in
reasing it if ne
essary). Thus, under the assump-tions from Se
tion 2.1, the �nal s
hedule satis�es the bounds of Theorem 1.2(a).8



The diÆ
ulty with the algorithm given in Se
tion 3.1 is that the operations may bebadly distributed to the nodes of T by S whi
h would make S 0 ineÆ
ient. To 
larify,
onsider the example given in Figures 3.1{3.5. In this 
ase, node u10 is assignedoperations C and K and node u11 is assigned operation H . The algorithm s
hedulesoperations C and K before operation H . However, sin
e H is on a di�erent ma
hinefrom C and K, it 
ould have been s
heduled to overlap C or K. In this se
tion,we show how to over
ome this problem by \pushing down" operations C and K tonodes u11 and u12.The algorithm that we des
ribe here starts with the allo
ation of operations tonodes of T that is de�ned in Se
tion 3.1. That is, Si(u) is taken to be the set ofoperations that are s
heduled on Mi by S for time interval [l(u); r(u) + 1). Thealgorithm then 
hops T into disjoint subtrees in a manner des
ribed below. For ea
hsubtree, it re-distributes the operations that are allo
ated to the nodes of the subtreeby \pushing" some operations from parents to 
hildren (in a manner whi
h will bedes
ribed shortly). After the re-distribution, Ri(u) is the set of ma
hine-i operationsthat are allo
ated to node u. p(u) is then taken to be the maximum over all i, ofthe sum of the lengths of the operations in Ri(u). The algorithm then �nishes thealgorithm of Se
tion 3.1: the p-values 
omputed for ea
h node are used to 
omputef(v) (for every node v). Then the operations in Ri(v) are s
heduled beginning at timef(v) + 1 and 
on
luding by the end of timestep f(v) + p(v).The partitioning of T is done by removing all edges from parents with heightequal to 0 modulo log�. (Thus, every resulting subtree T 0 has height at most log�.)Let lg denote the logarithm to the base 2. (In some pla
es below, we will not beable to use logx sin
e, as de�ned by us, logx does not always equal the logarithm ofx to the base 2. So we need lg.)The re-distribution of operations for subtree T 0 pro
eeds in a top-down manner,independently for ea
h ma
hine Mi. We will illustrate the pro
ess with the job-shopinstan
e in Figure 3.6, where we assume (for des
riptive purposes) that T has onlyone sub-tree T 0. Start at the root, u1, of T 0. Suppose that u1 has h operationsallo
ated to it. (In this 
ase, h = 3.) Let h0 = 2dlg he (in this 
ase, h0 = 4) andallo
ate h0 � h dummy operations ; to T 0 as in Figure 3.7. (The reason for addingthe dummy operations is to make the number of operations at the root equal to apower of 2.) If the height of the subtree rooted at u1 (in this 
ase, 2) is at least lg(h0)(whi
h is also 2 in this 
ase), then the h0 operations originally allo
ated to u1 arere-allo
ated to the h0 nodes that are at distan
e lg(h0) below u as in Figure 3.8. Next,the operations are further re-allo
ated re
ursively in the subtrees below u1 (in this
ase, the operations are re
ursively re-allo
ated in the subtrees rooted at u2 and u5).If, in one of these re
ursive 
alls, the height, k, of the subtree being 
onsidered isless than lg(h0) (where h0 is the number of originally allo
ated operations at the root,
ounting dummy operations) then h0=2k of the operations originally allo
ated to theroot are re-allo
ated to ea
h of the leaves. For example, in the re
ursive 
all on thesubtree rooted at u2 in Figure 3.8, h0 = 4 (be
ause a dummy operation is added tou2 to make the number of operations a power of 2) and the height, k, of the subtreebelow u2 is 1. Thus, h0=21 operations are pushed from u2 to ea
h of its 
hildren asin Figure 3.9. The re
ursive 
all at u5 and the re
ursive 
alls at the leaves do notfurther re-distribute operations.A more formal des
ription of the pushdown algorithm is as follows. As above,we assume that jjSi(v)jj is a power of two for all i and v; furthermore, although wewill push some operations down the tree, Si(v) will throughout refer to the original9



set of operations s
heduled on Mi for the time interval [l(v); r(v)+1). First partitionthe tree T into disjoint subtrees, by removing all edges from parents with heightequal to 0 modulo log�. We then pro
eed independently for ea
h subtree T 0 that isprodu
ed from the partition, and for ea
h ma
hineMi, by 
alling a re
ursive pro
edurepushdown(T 0; i), whi
h we des
ribe now. Given a binary tree T 00 with root u and ama
hine index i, pushdown(T 00; i) is as follows. If T 00 is a leaf, the pro
edure doesnothing. Otherwise, suppose jjSi(u)jj = h0, with h0 being a power of two. If theheight k of T 00 is at least lg(h0), then the h0 operations of Si(u) are re-allo
ated tothe h0 nodes that are at distan
e lg(h0) below u; else if k < lg(h0), then h0=2k of theoperations in Si(u) are re-allo
ated to ea
h of the leaves of T 00. Finally, we re
ursively
all the pro
edure on the left and right subtrees of T 00.Note that if the new algorithm is applied to the problem instan
e from Figures 3.1{3.5 then the makespan is redu
ed by one, be
ause operations C and K are pusheddown to the leaves so operation H is s
heduled to overlap operation C.Let S 0 denote the s
hedule produ
ed (from S) by the new algorithm.Lemma 3.3. S 0 is a feasible s
hedule with makespan O(pmax�dlog pmax= log�e).Proof. The proof that S 0 is feasible follows exa
tly as before. The makespan ofS 0 is no more than Pu2T p(u).Consider a subtree T 0 of the partition. Assume the leaves of T 0 are at height j inT . Let w be a node in T 0 and let V be the subset of nodes of T 0 
onsisting of w andits an
estors in T 0.First suppose w is a leaf. Let v be a node in V and assume that v has height kin T 0 with jjSi(v)jj = h. (See Figure 3.10.)Then v 
ontributes at most 2dlg he=2k operations to Ri(w) and ea
h has length2j+k. The time needed to perform these operations is 2dlg he�k � 2j+k = 2dlg he+j . ByLemma 3.1, part (a),Pv2V jjSi(v)jj � 2�. (The fa
tor of 2 arises from the (possible)padding of Si(v) with dummy operations.) Thus p(w) � 2j+1�.Now suppose w is at height r > 0 in T 0. (See Figure 3.11.) A node v 2 V atheight r+k in T 0 
ontributes at most one operation to Ri(w) and its length is 2j+k+r .Thus p(w) �Plog��rk=0 2j+k+r � 2j+1�.Thus, if node w is at height r+j in T and is in the layer of the partition 
ontainingT 0, then p(w) � 2j+1�; also, there are pmax=2r+j nodes at this height in T . The sumof these p(w)'s is thus at most 2�pmax=2r. Ea
h layer therefore 
ontributes at most4�pmax, and there are d(log pmax)=(log�)e layers. ThusPv2T p(v) satis�es the boundof the lemma.3.3. Derandomization and parallelization. Note that all portions of ouralgorithm are deterministi
 (and 
an be implemented in NC), ex
ept for the settingof the initial random delays, whi
h we show how to derandomize now. The methodof 
onditional probabilities 
ould be applied to give the sequential derandomization,however that result will follow from the NC algorithm that we present. We begin witha te
hni
al lemma.Lemma 3.4. Let x1; x2; : : : ; x` be non-negative integers su
h that Pi xi = `a, forsome a � 1. Let k � a be any positive integer. Then, Pì=1 �xik � � ` � �ak�.Proof. For real x, we de�ne, as usual, �xk� := (x(x � 1) � � � (x � k + 1))=k!. We�rst verify that the fun
tion f(x) = �xk� is non-de
reasing and 
onvex for x � k, bya simple 
he
k that the �rst and se
ond derivatives of f are non-negative for x � k.Think of minimizing Pi �xik � subje
t to the given 
onstraints. If xi � (k � 1) forsome i, then there should be an index j su
h that xj � (k + 1), sin
e Pi xi � `k.Thus, we 
an lessen the obje
tive fun
tion by simultaneously setting xi := xi+1 and10



xj := xj � 1. Hen
e we may assume that all the integers xi are at least k. By the
onvexity of f for x � k, we see that the obje
tive fun
tion is at least Pì=1 �ak�.De�ne, for z = (z1; z2; : : : ; zn) 2 <n, a family of symmetri
 polynomials Sj(z); j =0; 1; : : : ; n, where S0(z) � 1, and for 1 � j � n, Sj(z) :=P1�i1<i2���<ij�n zi1zi2 � � � zij .We re
all one of the main results of [2℄ (this is not expli
itly presented in [2℄, but is anobvious 
orollary of the results of Se
tion 4 in [2℄). In the statement of Proposition3.5, the fun
tion G refers to the one introdu
ed in Se
tion 2.2. Namely, G(�; Æ) =(eÆ=(1 + Æ)1+Æ)�:Proposition 3.5. ([2℄) Suppose we are given m independent random variablesy1; : : : ; ym, ea
h of whi
h takes values uniformly in R = f0; 1; : : : ; 2b � 1g whereb = O(logN); N here is a parameter that roughly stands for \input length", andm = NO(1). Suppose we are also given, for ea
h j 2 [m℄, a �nite set of binaryrandom variables fzjt : t = 1; 2; : : :g where zjt is 1 if and only if yj lies in some �xedsubset Rjt of R. Also given are r random variablesUi = mXj=1 zj;f(i;j); i 2 [r℄;where f is some arbitrary given fun
tion. If E[Ui℄ < 1 for ea
h i, then given anypositive integer k su
h that k = O(logN), we 
an �nd, deterministi
ally using NO(1)pro
essors and O(logO(1)N) time on the EREW PRAM, a setting y1 := w1; : : : ; ym :=wm su
h that Xi2[r℄Sk(z1;f(i;1); : : : ; zm;f(i;m)) � rG(1; k � 1)(1 +N�
);for any desired 
onstant 
 > 0.In our setting, the random variables yi are the initial random delays of the jobs.It is easy to verify that ea
h random variable C(Mi; t) is of the form of some Uj inthe notation of Proposition 3.5. By giving the initial random delays in the rangef0; 1; : : : ; 2�maxg instead of from f0; 1; : : : ; 2�max � 1g, we 
an ensure the 
onditionE[Uj ℄ < 1 of Proposition 3.5 (E[C(Mi; t)℄ � 2�max=(2�max + 1) now). Let � and �be as in Lemma 3.1, and note that both are logarithmi
ally bounded in the lengthof the input, as required for the parameter k in Proposition 3.5. Let the randomvariables Xi;j;t be as in Fa
t 2.3. From the proof of part (a) of Lemma 3.1, we seethatPi;tG(1; �� 1) is smaller than 1; thus, by Proposition 3.5, we 
an �nd a setting~w for the initial delays in NC su
h thatXi;t S�(Xi;1;t; Xi;2;t; : : : ; Xi;n;t) < 1:(3.2)If the 
ongestion of some ma
hine Mi at some t were at least � due to the abovesetting of the initial delays to ~w, then the left-hand-side of (3.2) would be at least 1,
ontradi
ting (3.2). Thus, we have an NC derandomization of Theorem 1.2(a).As for Theorem 1.2(b), we 
an similarly �nd an NC assignment of initial delays~w su
h thatXi;t S�(Xi;1;t; Xi;2;t; : : : ; Xi;n;t) = O((Pmax +�max)mG(1; � � 1))(3.3) = O((Pmax +�max)):11



Let C(t) be the (deterministi
) maximum 
ontention at time t, due to this setting.Note that �C(t)� � �Xi S�(Xi;1;t; Xi;2;t; : : : ; Xi;n;t):Thus, by (3.3), we see thatXt �C(t)� � = O((Pmax +�max)):We invoke Lemma 3.4 to 
on
lude thatPt C(t) = O((Pmax +�max)�); thus, we havean NC derandomization of Theorem 1.2(b).We remark that the work of Mahajan, Ramos & Subrahmanyam [13℄ 
ould alsobe used to obtain an NC derandomization.4. Proof of Theorem 1.3. We now set about to prove Theorem 1.3; we arevery mu
h motivated here by the framework of [5, 1, 12℄ and of Se
tion 6.1 of [17℄.The new ideas we need are due to the two basi
 ways in whi
h job-shop s
hedulinggeneralizes pa
ket routing: both a
y
li
ity and the \pmax = 1" 
ondition 
an beviolated. Theorem 4.3 is used �rst (in the next subse
tion) and proved later; this isto help the reader get to some of the new ideas qui
kly. The algorithms are shown inSe
tions 4.2 and 4.3.4.1. Preliminary results. We start with a standard fa
t about the fun
tion Gof Se
tion 2.2, where G(�; Æ) = (eÆ=(1 + Æ)1+Æ)�.Fa
t 4.1. (a) If Æ 2 [0; 1℄, then eÆ=(1 + Æ)(1+Æ) � e�Æ2=3. (b) If 0 < �1 � �2,then for any Æ � 0, G(�1; �2Æ=�1) � G(�2; Æ).Proof. (a) The proof follows from observing that the fun
tion Æ 7! ln(e�Æ2=3(1 +Æ)(1+Æ)e�Æ) is 0 when Æ = 0, and that its derivative is ln(1 + Æ) � 2Æ=3 whi
h isnon-negative for Æ 2 [0; 1℄.(b) We need to show that(1 + Æ)(1+Æ)�2 � �1 + �2Æ�1 �(1+�2Æ�1 )�1 ;i.e., that �(v) := (1 + vÆ) ln(1 + vÆ) � v(1 + Æ) ln(1 + Æ) � 0 for all v � 1. We have�(1) = 0; �0(v) = Æ+Æ ln(1+vÆ)�(1+Æ) ln(1+Æ). For v � 1, �0(v) � Æ�ln(1+Æ) � 0.The next lemma follows from [18℄.Lemma 4.2. ([18℄) Let X1; : : : ; X` 2 f0; 1g be random variables su
h that, forany set T � f1; 2; : : : ; `g, Pr[Vi2T (Xi = 1)℄ � Qi2T Pr[Xi = 1℄; informally, the Xiare \negatively 
orrelated". Then if X = PiXi with E[X ℄ � �, we have, for anyÆ � 0, Pr[X � �(1 + Æ)℄ � G(�; Æ).Suppose we are given a job-shop instan
e I . A delayed s
hedule S for I is any\s
hedule" in whi
h ea
h job Jj waits for some arbitrary non-negative integral amountof time dj , and then gets pro
essed 
ontinuously. (Thus, S is a delayed s
hedule if andonly if there exists some non-negative integer B su
h that S is a B-delayed s
hedule.)Suppose, for some non-negative integer B0, we 
hoose integers d01; d02; : : : ; d0j uniformlyat random and independently, from f0; 1; : : : ; B0�1g. The (random) s
hedule obtained12



by giving an initial delay of d0j (in addition to the dj above) to ea
h job Jj , willbe 
alled a random (B0;S)-delayed s
hedule. Note that this also will be a delayeds
hedule.We require a few more de�nitions related to S as above. Suppose L denotesthe makespan of S. Then, given an integer `, an `-interval is any time interval ofthe form [t; t + `), where t is an integer su
h that 0 � t � L � 1. We denote theinterval [t; t+ `) by Ft. The 
ontention of ma
hine Mi in interval Fk in the s
heduleS, denoted CS;`(i; k), is the total pro
essing time on Mi within Fk, in the s
heduleS. (Suppose, for instan
e, an operation O of length ` + 2 uses Mi and is s
heduledto run on Mi in the interval [t; t + ` + 2), in S. Then, for example, O 
ontributes avalue of ` to CS;`(i; t) and a value of three to CS;`(i; t+ `� 1).)Given any integers j1; j2 su
h that 1 � j1 � j2 � n, we let C 0S;`(i; k; j1; j2) denotethe total pro
essing time on ma
hine Mi in the interval Fk in the s
hedule S that isimposed by jobs Jj1 ; Jj1+1; : : : ; Jj2 . (In parti
ular, C 0S;`(i; k; 1; n) = CS;`(i; k).)Given a delayed s
hedule S, we 
all S an (L; `; C)-s
hedule if and only if:� the makespan of S is at most L, and� for all ma
hines Mi and all `-intervals Fk, CS;`(i; k) � C.We emphasize that this notation will be employed only for delayed s
hedules.We start with Theorem 4.3, whi
h will be of mu
h help in proving Theorem 1.3.Given an (L; `; C0)-s
hedule for a job-shop instan
e, Theorem 4.3 shows a suÆ
ient
ondition under whi
h we 
an eÆ
iently 
onstru
t an (L + B; `0; C1)-s
hedule forappropriate values of B; `0 and C1. In most of our appli
ations of the theorem, wewill have: (i) `0 � `, (ii) B � L, and (iii) C1 suÆ
iently small so that the new\relative 
ongestion" C1=`0 is not mu
h more than the original relative 
ongestionC0=`. Thus, by slightly in
reasing the makespan of the delayed s
hedule, we are ableto bound the relative 
ongestion in intervals of mu
h smaller length (note from (i)that `0 � `). Appropriate repetitions of this idea, along with some other tools, willhelp us prove Theorem 1.3.For 
onvenien
e, we de�ne x+ = max(x; 0).Theorem 4.3. There is a suÆ
iently large 
onstant 
3 > 0 su
h that the followingholds. Suppose S is an (L; `; C)-s
hedule for a given job-shop instan
e I, for someL; `; C. Let non-negative integers `0 � ` and B � `� `0 + 1 be arbitrary; let S 0 be arandom (B;S)-delayed s
hedule.Suppose Æ > 0 is su
h that for all integers i 2 [m℄, 0 � k � L + B � 1 and1 � j1 � j2 � n,Pr[C 0S0;`0(i; k; j1; j2) � `0B � (C 0S;`(i; (k �B + 1)+; j1; j2) + CÆ)℄ � (maxfL;B;Cg)�
3 :Then there is a Las Vegas algorithm to 
onstru
t an (L+B; `0; C`0B � (1+3Æ))-s
hedulefor I; the expe
ted running time of the algorithm is poly(m;L; `; C). The proof ofTheorem 4.3 will be presented in Se
tion 4.5. Using ideas from our earlier proofs, weobtain the following 
orollary.Corollary 4.4. For general job-shop s
heduling, there is a polynomial-time LasVegas algorithm to 
onstru
t a s
hedule of makespanO�(Pmax +�max) � log(Pmax +�max)log log(Pmax +�max) � � log(minfm�; pmaxg)log log(Pmax +�max)�� :13



Proof. Let I be a job-shop s
heduling instan
e with asso
iated values Pmax and�max; de�ne L = 2Pmax and B = 2�max. Let I 0 be the modi�ed instan
e formed by re-pla
ing ea
h operation (Mj;k; tj;k) by the operation (Mj;k; 2�tj;k). We trivially have an(L;B;B)-s
hedule S for I 0. Choose � = 
0 log(Pmax +�max)= log log(Pmax +�max);
0 is a suitably large 
onstant as spe
i�ed below.Let S 0 denote the random (B;S)-delayed s
hedule. From the proof of Lemma 3.1(a), we �nd that Pr[C 0S0;1(i; k; j1; j2) � �℄ � (maxfL;B;Cg)�
3 will hold for alli; k; j1; j2, by making 
0 large. Thus, by setting `0 = 1 in Theorem 4.3, we 
aneÆ
iently �nd an (L+B; 1; C0)-s
hedule for I 0, where C0 = O(�). So we 
an eÆ
iently
onstru
t a well-stru
tured s
hedule for I with makespan O(Pmax +�max) in whi
h,for all ma
hines Mi and time steps t, the number of operations s
heduled on ma
hineMi in the time interval [t; t+ 1) is at most O(�). The 
orollary now follows from theproof of Theorem 1.2(a) by using this fa
t in pla
e of Lemma 3.1.We now present Lemma 4.5, whi
h shows a way of using Theorem 4.3. The notionof \w-separated" in its part (b), is as de�ned in Se
tion 1.2. Namely, every distin
tpair of operations of the same job with the same ma
hine has at least w�1 operationsbetween them.Lemma 4.5. (a) Consider any job-shop instan
e I in whi
h any job needs atmost u units of pro
essing on any ma
hine. Suppose S is some (L; `; C)-s
hedule forI. For non-negative integers `0 � ` and B � `� `0+1, suppose S 0 denotes the random(B;S)-delayed s
hedule. Then, for any Æ > 0 and all i; k; j1; j2,Pr[C 0S0;`0(i; k; j1; j2) � `0B � (C 0S;`(i; (k �B + 1)+; j1; j2) + CÆ)℄ � G(C`0=(Bu); Æ):(b) Suppose I is a w-separated job-shop instan
e with pmax = 1, and that S denotes the(unique) 0-delayed s
hedule for I. Let S 0 denote the random �max-delayed s
hedulefor I. Then, for any Æ > 0 and all i; k; j1; j2,Pr[C 0S0;w(i; k; j1; j2) � w�max � (C 0S;�max+w�1(i; (k ��max + 1)+; j1; j2) + �maxÆ)℄� G(w; Æ):Proof. To have some 
ommon notation for parts (a) and (b), we de�ne the fol-lowing quantities for (b). First, in (b), S is a (Pmax; `; C)-s
hedule, where, e.g.,` = �max + w � 1 and C = �max. Also, in (b), S 0 is the random (B;S)-delayeds
hedule, where B = �max; we also set `0 = w in (b). Note that the 
onditions `0 � `and B � `� `0 + 1 now hold for (b) also.We now make some observations 
ommon to (a) and (b). Fix i; k; j1; j2. Sin
eall new delays introdu
ed by S 0 lie in f0; 1; : : : ; B � 1g, the only units of pro
essingthat 
an get s
heduled on Mi in the interval [k; k + `0) in S 0, are those that weres
heduled on Mi in the interval I := [(k �B +1)+; k+ `0) in S. Note that the lengthof I is at most `0 +B � 1 � `. For ea
h job Jj , number its single units of pro
essings
heduled on Mi in I in S, as Uj;1; Uj;2; : : :. Sin
e the length of I is at most `,the de�nition of C 0 shows that the number of su
h units for ea
h job Jj , is at mostC 0S;`(i; (k �B + 1)+; j; j).Let Xj;t be the indi
ator random variable for Uj;t getting s
heduled in the interval[k; k + `0) in S 0. We have C 0S0;`0(i; k; j1; j2) � j2Xj=j1Xt Xj;t:(4.1) 14



Sin
e E[Xj;t℄ � `0=B for ea
h j; t, we have� := E[C 0S0;`0(i; k; j1; j2)℄ � j2Xj=j1(C 0S;`(i; (k �B + 1)+; j; j)`0=B)(4.2) = C 0S;`(i; (k �B + 1)+; j1; j2)`0=B:We now handle part (a). By (4.1), C 00 := C 0S0;`0(i; k; j1; j2)=u is at mostPj2j=j1 Yj ,where Yj := u�1PtXj;t. By the de�nition of u, Yj � 1 for ea
h j. So the randomvariables fYj : j 2 [j1; j2℄g lie in [0; 1℄, and are independent. A Cherno�-Hoe�dingbound shows for any Æ0 � 0 thatPr[C 0S0;`0(i; k; j1; j2) � �(1 + Æ0)℄ = Pr[C 00 � (�=u) � (1 + Æ0)℄ � G(�=u; Æ0):(4.3)Next, C 0S;`(i; (k � B + 1)+; j1; j2) � C, sin
e S is an (L; `; C)-s
hedule. So, applying(4.2) and Fa
t 4.1(b) to (4.3) 
ompletes the proof for part (a).For part (b), 
onsider any job Jj . Sin
e `0 = w here, the de�nition of w-separatedshows that we 
annot have Xj;t = Xj;t0 = 1, if t 6= t0. This easily leads us to see thatthe random variables fXj;t : j; tg are negatively 
orrelated, in the sense of Lemma4.2. So, an appli
ation of Lemma 4.2 and Fa
t 4.1(b) to (4.1) and (4.2) 
ompletes theproof for part (b).We will next use these results to prove Theorem 1.3, in Se
tions 4.2 and 4.3.4.2. Proof of Theorem 1.3(b). Re
all that we are 
onsidering any w-separatedjob-shop instan
e I with pmax = 1 now. Let S be the 0-delayed s
hedule for I . Thus,S is a (Pmax; `; C)-s
hedule, where, e.g., ` = �max + w � 1 and C = �max. Also letS 0 be the random (B;S)-delayed s
hedule, where B = �max; i.e., S 0 is the randomB-delayed s
hedule for I . De�ne `0 = w.We 
an ensure that G(w; Æ) � (Pmax +�max)�
3 , by 
hoosing (i) Æ = 
00 if w �log(Pmax +�max)=2, and (ii) Æ = 
00 log(Pmax +�max)=(w log(log(Pmax +�max)=w))if w < log(Pmax +�max)=2, for some suitably large 
onstant 
00. By Lemma 4.5(b) andTheorem 4.3, we 
an then eÆ
iently 
onstru
t a (Pmax +�max; w; w(1+3Æ))-s
heduleS 00 for I . We partition S 00 into d(Pmax +�max)=we intervals ea
h of length w; 
ru
ially,ea
h of these intervals (subproblems) is an a
y
li
 job-shop instan
e. Also, in ea
hof these subproblems, pmax = 1, and any ma
hine has at most w(1 + 3Æ) operationsto be s
heduled on it. Via the result of [12℄, ea
h subproblem 
an be eÆ
ientlys
heduled with makespan O(w + w(1 + Æ)) = O(w(1 + Æ)). We then 
on
atenate allthese s
hedules, leading to a �nal makespan of O((Pmax +�max)(1 + Æ)).4.3. Proof of Theorem 1.3(a). Re
all that our goal is to show the existen
e ofa s
hedule with makespan O((Pmax +�max) � log ulog log u � l log(minfm�;pmaxg)log log u m), assumingthat every job needs at most u time units on ea
h ma
hine. We assume that u � 2.Indeed, if u = 1, then we have an a
y
li
 job-shop instan
e with pmax = 1; so we willbe able to eÆ
iently 
onstru
t a s
hedule of length O(Pmax +�max) [11, 12℄. Thealgorithm is presented in Se
tion 4.3.2; we start with a useful tool.4.3.1. L0-splitting. Suppose we are given an (L; `; C)-s
hedule S for a job-shopinstan
e I , and want to split it into subproblems ea
h of makespan at most L0, wherepmax < L0 < L. If pmax = 1, this is easy, as seen in Se
tion 4.2. Consider the 
asewhere pmax is arbitrary. We now show a simple way of partitioning the operationsof S into at most dL=(L0 � pmax)e subproblems P1;P2; : : :. We will also output an15



(L0; `; C)-s
hedule Si for ea
h Pi. These subproblems will be su
h that they 
anbe solved independently and the resulting s
hedules 
on
atenated to give a feasibles
hedule for I . This \L0-splitting" pro
ess is as follows.We 
onsider all operations that are 
ompletely �nished by time L0 in S; s
hedulingthis set of operations be
omes our �rst subproblem P1. S provides a natural (L0; `; C)-s
hedule S1 for P1. If we have 
overed all operations by this pro
ess, we stop; if not,we de�ne the next subproblem P2 as follows. De�ne t1 = 0. Let t2 be the smallestinteger su
h that: (i) t2 � L0, and (ii) there is some operation O starting at time t2 inS, su
h that O is not 
ompletely �nished by time L0. (Note that L0�pmax < t2 � L0.)Our se
ond subproblem P2 
onsists of all operations: (a) �nishing by time t2 + L0in S, and (b) not 
overed by P1. The time interval [t2; t2 + L0) in S provides an(L0; `; C)-s
hedule S2 for P2 in the obvious way. On
e again, if we have not 
overedall operations, we de�ne t3 to be the smallest integer su
h that: (i) t3 � t2 + L0, and(ii) there is some operation O starting at time t3 in S, su
h that O is not 
ompletely�nished by time t2 + L0. We have t3 > t2 + L0 � pmax; thus t3 > 2(L0 � pmax). P3
onsists of all operations �nishing by time t3 + L0 that were not 
overed by P1 andP2. We iterate this until all operations are 
overed.In general, we have ti+1 � i(L0 � pmax); so the total number of subproblems
reated is at most dL=(L0 � pmax)e. It is also easy to see that we have an (L0; `; C)-s
hedule Si for ea
h Pi. Also, the subproblems 
an be solved independently and theresulting s
hedules 
on
atenated to give a feasible s
hedule for I .4.3.2. Algorithm and analysis. We 
hoose a suÆ
iently large positive 
on-stant b0. De�ne L0 = Pmax + �max, and Li = logLi�1 for i � 1. We repeat thisiteration until we arrive at a t for whi
h either Lt+1 � Lt, or Lt+1 � 36b20. (Thus, theiteration pro
eeds for O(log�(Pmax +�max)) steps.) Also, for 1 � i � t, de�neCi := L3i (1 + b0pL1 ) i�1Yj=1((1 + b0pLj+1 ) � 11� (Lj+1=Lj)3 ):(4.4)Re
all that Li � 36b20 for 1 � i � t. If b0 is large enough, we haveCi � L3i exp0�( iXj=1 b0pLj ) + O(i�1Xj=1(Lj+1Lj )3)1A � L3i exp(3b0=pLi) � 2L3i :(4.5)The se
ond inequality follows from the fa
t that the terms L�1j in
rease exponentially,with L�1j � (36b20)�1 and b0 suÆ
iently large.The algorithm is as follows. First, if u2 > Pmax +�max, then Corollary 4.4 showsthat we 
an 
onstru
t a s
hedule of makespan as 
laimed by Theorem 1.3(a). Sosuppose u2 � Pmax +�max. The algorithm 
onsists of a prepro
essing step and ageneral (re
ursive) step, motivated by the approa
h of Se
tion 6.1 of [17℄.Prepro
essing step. We start with the obvious (Pmax; `;�max)-s
hedule S, where` 
an be taken arbitrarily large.We �rst handle the 
ase where u � b0L1. We 
all this the \simple 
ase".De�ne `0 = u2, B = �max, and Æ = 1. If b0 is large enough, then G(u; Æ) �(Pmax +�max)�
3 . Thus, by Lemma 4.5(a) and Theorem 4.3, we 
an eÆ
iently 
on-stru
t a (Pmax +�max; u2; 4u2)-s
hedule S 0. We apply u2-splitting to S 0, as de�nedin Se
tion 4.3.1. Sin
e u � 2 and pmax � u, the total number of subproblems is atmost d(Pmax +�max)=(u2 � pmax)e � O((Pmax +�max)=u2). Also, ea
h of the sub-problems has \Pmax" at most u2 and \�max" at most 4u2. So, by Corollary 4.4,16



ea
h of these subproblems 
an be eÆ
iently given a valid s
hedule of makespanO�u2 � log ulog log u � l log(minfm�;pmaxg)log log u m�. As seen above, the number of subproblems isO((Pmax +�max)=u2), so the 
on
atenation of these s
hedules yields a �nal s
heduleof makespan as 
laimed by Theorem 1.3(a).We now move on to the more interesting 
ase where u < b0L1. We de�ne `0 =L31, B = �max, and Æ = b0=(3pL1). By Fa
t 4.1(a) and sin
e u < b0L1, we haveG(`0=u; Æ) � exp(�b0L1=27), whi
h 
an be made at most (Pmax +�max)�
3 if b0is 
hosen suÆ
iently large. By Lemma 4.5(a) and Theorem 4.3, we 
an eÆ
iently
onstru
t a (Pmax +�max; L31; C1)-s
hedule S 0. (See (4.4) for the de�nition of theCi.) We apply L41-splitting to S 0 to obtain some subproblems, ea
h of whi
h also
omes with an (L41; L31; C1)-s
hedule. The number of subproblems is at mostdL0=(L41 � pmax)e � dL0=(L41 � b0L1)e� L0=(L41 � b0L1) + 1� L0L41 � (1 + O(1=L31) + O(L41=L0))� L0L41 � (1 + O(1=L31)):(4.6)We next show a re
ursive s
heme to handle ea
h of these subproblems.General step. Suppose, in general, we have a subproblem whi
h 
omes with an(L4i ; L3i ; Ci)-s
hedule, 1 � i � t. We �rst dispose of some easy 
ases. If i = t, thenLi = O(1); by (4.5), Ci = O(1) also. Thus, we 
an eÆ
iently �nd a s
hedule oflength O(1). So we assume i � t � 1. Next, suppose u2 � L3i =2. Note that the\Pmax" and \�max" values of the given subproblem are respe
tively at most L4i andCi � (L4i =L3i ) = O(L4i ). Thus, if u2 � L3i =2, then Corollary 4.4 shows that we 
an
onstru
t a s
hedule of makespanO�L4i � logulog logu � � log(minfm�; pmaxg)log logu �� :(4.7)So we assume that u2 < L3i =2.We now show a s
heme that will 
onstru
t a feasible s
hedule for the problem ifu � b0Li+1; if u < b0Li+1, we will show how to redu
e this problem to a number ofsubproblems, ea
h of whi
h 
omes with an (L4i+1; L3i+1; Ci+1)-s
hedule.First suppose u � b0Li+1. We follow our approa
h for the simple 
ase of theprepro
essing step. De�ne B = L3i =2, ` = L3i , `0 = u2, and Æ = 1. Sin
e u2 < L3i =2,we have B + `0 � ` as required by Theorem 4.3. So, if b0 is suÆ
iently large, we willhave G(Ci`0=(Bu); Æ) � (L4i + Ci)�
3 ;(4.8)sin
e L3i < Ci � 2L3i by (4.4) and (4.5). As in the \simple 
ase", we 
an get an(L4i+B; `0;O(`0))-s
hedule, apply `0-splitting to it, and solve the resulting subproblemsusing Corollary 4.4. The �nal s
hedule will have makespan as in (4.7).Finally, suppose u < b0Li+1. We follow the general idea of the \interesting
ase" of the prepro
essing step. De�ne B = L3i � L3i+1, ` = L3i , `0 = L3i+1, andÆ = b0=(3pLi+1). On
e again, sin
e u < b0Li+1, we will have (4.8). Thus, as in the\interesting 
ase", we 
onstru
t an (L4i + L3i ; L3i+1; Ci+1)-s
hedule, and apply L4i+1-splitting to it. As a result, we get some number of subproblems, ea
h of whi
h is17



equipped with an (L4i+1; L3i+1; Ci+1)-s
hedule; we re
urse on these independently. Asin the derivation of (4.6), the number of subproblems is at mostd(L4i + L3i )=(L4i+1 � b0Li+1)e � L4iL4i+1 � (1 + O(1=L3i+1)):(4.9)Let the �nal set of subproblems we solve be those that 
ome with an (L4p; L3p; Cp)-s
hedule, for some p. The produ
t of the terms in (4.6) and (4.9) as i runs from 1 top� 1, is O(L0=L4p). Thus, by (4.7), the �nal makespan isO�(L0=L4p)L4p � logulog logu � � log(minfm�; pmaxg)log logu ��= O�L0 � logulog logu � � log(minfm�; pmaxg)log log u �� ;as 
laimed by Theorem 1.3(a).4.4. Basi
 ideas from earlier 
onstru
tivizations of the LLL. This se
tionis based on the work of [5, 1, 12℄. The main result here is Theorem 4.7, whi
h will beused in Se
tion 4.5 to prove Theorem 4.3.Given an undire
ted graph G = (V;E), re
all that a set C � V is a dominatingset of G if and only if all verti
es in V �C have some neighbour in C. For any positiveinteger `, we de�ne G` to be the graph on the same vertex set V , with two verti
esadja
ent if and only if they are distin
t and there is a path of length at most ` that
onne
ts them in G. We let �(G) denote the maximum degree of the verti
es in G.Also, suppose R is some random pro
ess and that ea
h vertex in V represents someevent related to R. We say that G is a dependen
y graph for R if and only if for ea
hv 2 V and any set of verti
es S su
h that no element of S is adja
ent to v in G, wehave that the event 
orresponding to v is independent of any Boolean 
ombination ofthe events 
orresponding to the elements of S.In Lemma 4.6 and subsequently, the phrase \
onne
ted 
omponent" means \max-imal 
onne
ted subgraph", as usual.Lemma 4.6. Given an undire
ted graph G1 = (V;E) with a dominating setC, let G2 be the subgraph of G31 that is indu
ed by C. Pi
k an arbitrary maximalindependent set I in G2, and let G3 be the subgraph of G32 indu
ed by I. SupposeG1 has a 
onne
ted 
omponent with N verti
es. Then G3 has a 
onne
ted 
omponentwith at least N=((�(G1) + 1)(�(G1))3) verti
es.Proof. Let C1 = (U;E0) be a 
onne
ted 
omponent of G1 with N verti
es.Then, the verti
es in C \ U are 
onne
ted in G2, whi
h is seen as follows. Sup-pose v1; u1; u2; : : : ; ut; vt is a path in C1, where v1 and vt are in C \U , and u1; : : : ; utare all in U � (C \ U). Then, sin
e C \ U is a dominating set in C1, for 1 < i < t,ui must have some neighbour vi 2 C \ U . Hen
e, there are paths vi; ui; ui+1; vi+1for 1 � i < t so v1 and vt are 
onne
ted in G2. Thus, all of the verti
es in C \ Uare 
onne
ted in G2. Sin
e C \ U is a dominating set in C1, it is also easy to 
he
kthat jC \ U j � N=(�(C1) + 1) � N=(�(G1) + 1). Thus, C \ U yields a 
onne
ted
omponent C2 in G2 that has at least N=(�(G1) + 1) verti
es.Sin
e �(C2) � (�(G1))3 � 1, one 
an similarly show that I \ (C \ U) yields a
onne
ted 
omponent C3 in G3 that has at leastjC \ U j�(C2) + 1 � jC \ U j(�(G1))3 � N(�(G1) + 1)(�(G1))318



verti
es.We present a key ingredient of [5, 1, 12℄:Theorem 4.7. Let a graph G = (V;E) be a dependen
y graph for a randompro
ess R, with the probability of o

urren
e of the event represented by any vertexof G being at most r. Run the pro
ess R, and let C � V be the verti
es of G thatrepresent the events (among the elements of V ) that o

urred during the run. (Thus,C is a random subset of V with some distribution.) Let G1 be the subgraph of Gindu
ed by C[C 0, where C 0 is the set of verti
es of G that have at least one neighbourin C. Then, for any x � 1, the probability of G1 having a 
onne
ted 
omponent withat least x(�(G) + 1)(�(G))3 verti
es, is at most jV j�(G)�18Py�x (�(G)18r)y.Proof. Observe that, by 
onstru
tion, C is a dominating set for G1. Constru
t G2,I , and G3 as in the statement of Lemma 4.6. Note that deterministi
ally, �(G1) ��(G). Thus, by Lemma 4.6, we just need to bound the probability of G3 having a
onne
ted 
omponent with x or more verti
es.Suppose that a size-y set S of verti
es of G forms a 
onne
ted 
omponent in G3.Then there is a sub-tree T of G3 whi
h spans the verti
es in S. T 
an be representedby a list L whi
h lists all of the verti
es that are visited in a depth-�rst traversal of T .Ea
h vertex in T (ex
ept the root) is visited both before its 
hildren and after ea
h
hild (the root is only visited after ea
h 
hild), so ea
h vertex appears on L on
e forea
h edge adja
ent to it in T . Thus, the length of L is 2(y � 1). If two verti
es areadja
ent on L then they are adja
ent in G3, whi
h implies that the distan
e betweenthem in G is at most 9. Thus, given G, the number of possible sets S is at most thenumber of possible lists L, whi
h is at most jV j (the number of 
hoi
es for the �rstvertex on L) times (�(G)9)2(y�1) (the number of 
hoi
es for the rest of L). Thus, thenumber of sets S whi
h 
ould possibly 
orrespond to size-y 
onne
ted 
omponentsin G3 is at most jV j�(G)�18�(G)18y.The de�nition of I implies that the verti
es in G3 form an independent set in G.Furthermore, given any independent set S of size y in G, Bayes' theorem and thede�nition of dependen
y graphs show that the probability that all elements of S arein G3 is at most ry . Thus, the probability that G3 has a 
onne
ted 
omponent ofsize y is at most jV j�(G)�18(�(G)18r)y.4.5. Proof of Theorem 4.3. We now assume the notation of Theorem 4.3 andprove the theorem. De�ne the following \bad" events:E(i; k; j1; j2) � (C 0S0;`0(i; k; j1; j2) � `0B � (C 0S;`(i; (k �B + 1)+; j1; j2) + CÆ));E 0(i; k; j1) � (9j2 � j1 : E(i; k; j1; j2)):By the assumption of Theorem 4.3, Pr[E(i; k; j1; j2)℄ � (maxfL;B;Cg)�
3 for all(i; k; j1; j2). Now, for the given instan
e I , Pmax � L and �max � C � dL=`e � CL.Thus, in parti
ular, at most CL jobs use any given ma
hine Mi. So, we have for all(i; k; j1) that Pr[E 0(i; k; j1)℄ � p := CL(maxfL;B;Cg)�
3 :(4.10)The algorithm pro
esses the jobs in the order J1; J2; : : :. When it is job Jj 'sturn, we give it a random delay from f0; 1; : : : ; B � 1g, and 
he
k if this makes, forany pair (i; k), the event E(i; k; 1; j) true. If so, we temporarily set aside Jj and allyet-unpro
essed jobs that use ma
hineMi. Let J1 denote the set of jobs whi
h do getassigned a delay by this pro
ess. We shall basi
ally show that, with high probability,19



the problem of assigning delays to the jobs not in J1 gets de
omposed into a set ofmu
h smaller subproblems. To this end, we �rst set up some notation in order toapply Theorem 4.7.Constru
t an undire
ted graph G with the events E 0(i; k; 1) as nodes, with an edgebetween two distin
t nodes E 0(i; k; 1) and E 0(i0; k0; 1) if and only if either (P1) i = i0,or (P2) there is some job that uses both the ma
hines Mi and Mi0 . It is easy to 
he
kthat G is a valid dependen
y graph for the events E 0(i; k; 1). The number of verti
esin G is at most m(L+ B). Re
all that at most CL jobs use any given ma
hine andthat ea
h su
h job uses at most L� 1 other ma
hines. Thus, ea
h node 
an have atmost L + B neighbours of type (P1), and at most CL(L � 1)(L + B) neighbours oftype (P2). So �(G) is at mostL+B + CL(L� 1)(L+B) � CL2(L+B)� 1:Run the above random pro
ess of randomly s
heduling and setting aside (if ne
-essary) some of the jobs. Let C be the set of events E 0(i; k; 1) that a
tually happened.Let C0 be the set of nodes of G that have at least one neighbour in C, and let G1 bethe subgraph of G that is indu
ed by C [ C0. Thus, by applying Theorem 4.7 withjV j � m(L+ B), �(G) � CL2(L+ B) � 1, x = logm and r = p, we see from (4.10)thatPr[G1 has a 
onne
ted 
omponent with at least (CL2(L+B))4 logm nodes℄� 1=2;(4.11)if 
3 is appropriately large.We repeat the above pro
ess until all 
onne
ted 
omponents of G1 have at most(CL2(L + B))4 logm nodes. By (4.11), we expe
t to run the above pro
ess at mosttwi
e.What have we a
hieved? Let us �rst give all the jobs in J1 their assigned delays,and remove them from 
onsideration. The key observation is as follows. Fix anyremaining job Jj . Then, for no two ma
hines Mi and Mi0 that are both used by Jj ,
an we have two nodes E 0(i; k; 1) and E 0(i0; k0; 1) in di�erent 
onne
ted 
omponents ofG1. This is be
ause E 0(i; k; 1) and E 0(i0; k0; 1) are neighbours in G. Thus, the problemin ea
h 
onne
ted 
omponent of G1 
an be solved 
ompletely independently of theother 
onne
ted 
omponents.So all 
onne
ted 
omponents of G1 have at most (CL2(L+B))4 logm nodes. Tofurther redu
e this 
omponent size, we repeat the above pro
ess on ea
h 
onne
ted
omponent CCt of G1 separately, as follows. Fix any su
h CCt. De�ne f1(i) to be theleast index j su
h that Jj 62 J1 and su
h that Jj uses Mi. (If all jobs that use Mi arein J1, we de�ne f1(i) = n+1 for 
onvenien
e.) Note that all jobs Jj that use Mi andhave j � f1(i), lie outside the set J1. We pro
ess the jobs lying outside J1 in orderas before. When it is job Jj 's turn, we give it a random delay from f0; 1; : : : ; B � 1g,and 
he
k if this makes, for any pair (i; k), the event E(i; k; f1(i); j) true. (This ismostly the same as before, ex
ept that we have \f1(i)" in pla
e of \1" now.) If so, wetemporarily set aside Jj and all yet-unpro
essed jobs lying outside J1, that use Mi.We pro
eed similarly as above. Let J2 denote the set of jobs whi
h get assigned adelay by this pro
ess. We now show that the problem of assigning delays to the jobsnot in J1 [J2 gets de
omposed into even smaller subproblems, with high probability.In pla
e of the bad events fE 0(i; k; 1)g, the bad events now are fE 0(i; k; f1(i))g. We
an on
e again invoke Theorem 4.7; we take jV j � (CL2(L + B))4 logm, �(G) �20



CL2(L+B)� 1, x = log logm and r = p. As before, if 
3 is large enough, we expe
tto repeat this pro
ess at most twi
e before ensuring that all resulting \
onne
ted
omponents" have at most (CL2(L+B))4 log logm nodes.We now 
onsider any 
onne
ted 
omponent CC 0t remaining after the above twopasses. (On
e again, all these 
omponents 
an be handled independently.) De�nef2(i) to be the least index j su
h that Jj 62 (J1 [ J2) and su
h that Jj uses Mi. Wenow show how to give delays to all jobs lying outside (J1 [ J2), in a manner thatavoids all the events E 0(i; k; f2(i)). There are two 
ases:Case I: log logm � L + B + C. In this 
ase, the number of \nodes" (eventsE 0(i; k; f2(i))) in CC 0t is poly(L;B;C). Thus, if we start with a random B-delayeds
hedule for the jobs asso
iated with CC 0t, the probability that at least one \bad"event asso
iated with CC 0t (i.e., at least one node of CC 0t) happens is at most 1=2, if
3 is large enough. So we expe
t to run this pro
ess on CC 0t at most twi
e.Case II: log logm > L+B+C. The number of nodes in CC 0t is O(poly(log logm)) inthis 
ase. So the number of ma
hines asso
iated with CC 0t is also O(poly(log logm)),and hen
e the number of jobs asso
iated with CC 0t is at most O(L � poly(log logm)),i.e., O(poly(log logm)).We re
all the Lov�asz Lo
al Lemma (LLL):Lemma 4.8. ([7℄) Let E1; E2; : : : ; E` be any events with Pr[Ei℄ � q for all i. Ifea
h Ei is mutually independent of all but at most d of the other events Ej and ifeq(d+ 1) � 1, then Pr[Vì=1Ei℄ > 0.As seen above, any event E 0(i; k; f2(i)) depends on at most CL2(L+B)� 1 othersu
h events. Also, Pr[E 0(i; k; f2(i))℄ � p for all i; k. Thus, if 
3 is suÆ
iently large,the LLL shows that there exists a way of giving a delay in f0; 1; : : : ; B � 1g to ea
hjob asso
iated with CC 0t, in order to avoid all the events E 0(i; k; f2(i)) asso
iatedwith CC 0t. But here, there are at most O(poly(log logm)) jobs, and ea
h has onlyB � log logm possible initial delays! Thus, exhaustive sear
h 
an be applied to �nda \good" B-delayed s
hedule that we know to exist: the time needed for CC 0t is atmost (log logm)O(poly(log logm)) = mo(1):Let S 00 be the �nal delayed s
hedule produ
ed. Consider any interval (k; k + `0).We have CS00;`0(i; k) � `0B � (C 0S;`(i; (k �B + 1)+; 1; f1(i)� 1) + CÆ) +`0B � (C 0S;`(i; (k �B + 1)+; f1(i); f2(i)� 1) + CÆ) +`0B � (C 0S;`(i; (k �B + 1)+; f2(i); n) + CÆ)= `0B � (C 0S;`(i; (k �B + 1)+; 1; n) + 3CÆ)� `0B � (C + 3CÆ);as required. 21



It is also easy to 
he
k via linearity of expe
tation that the expe
ted running timeof the algorithm is poly(m;L; `; C). This 
on
ludes the proof of Theorem 4.3.A
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q B, J qFq qE q C, K qDq q q qG qH qI q q
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 JJJJ���� BBBB ���� BBBB ���� BBBB ���� BBBBFig. 3.2. Assigning operations to nodes of T . For example, if u denotes the leftmost node onthe se
ond-highest level, then S1(u) = fBg, S5(u) = fJg, and S`(u) = ; for every other `.
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 JJJJ���� BBBB ���� BBBB ���� BBBB ���� BBBBFig. 3.3. Cal
ulating p for ea
h node.q u1; 0q u2; 8 q u9; 15q u3; 12 q u6; 12 q u10; 19 q u13; 25q u4; 12 q u5; 12 q u7; 14 q u8; 14 q u11; 23 q u12; 24 q u14; 27 q u15; 27

��������� ZZZZZZZZZ






 JJJJJJJ 






 JJJJJJJ������� BBBBBBB ������� BBBBBBB ������� BBBBBBB ������� BBBBBBBFig. 3.4. Cal
ulating f for ea
h node.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27Job 1: AM1Job 2: BM1 CM2 DM3Job 3: EM3 FM4Job 4: GM4 HM1 IM2Job 5: JM2 KM2Fig. 3.5. The s
hedule S0.24



Job 1: AJob 2: BJob 3: C DJob 4: E FJob 5: GJob 6: HJob 7: IJob 6: JFig. 3.6. One frame of S, fo
ussing only on operations for a single ma
hine.u1
u2u3 u4 u5u6 u7

qA;B;H; ;
q C; I; J q Gq E q q F qD

������� \\\\\\\
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 JJJJFig. 3.7. Assigning a dummy operation ; to the root of T 0.u1
u2u3 u4 u5u6 u7

q
q C; I; J qGq E;A q B q F;H qD; ;
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 JJJJFig. 3.8. Redistributing the operations originally allo
ated to u1.u1
u2u3 u4 u5u6 u7

q
q qGqE;A;C; I qB; J; ; qF;H qD; ;
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 JJJJFig. 3.9. Redistributing the operations originally allo
ated to u2.25



� - leaves of T?
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6k�������

�
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Fig. 3.10. The 
ase in whi
h w is a leaf.

� - leaves of T?
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Fig. 3.11. The 
ase in whi
h w is not a leaf.
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