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Abstract. Job-shop scheduling is a classical NP-hard problem. Shmoys, Stein & Wein presented
the first polynomial-time approximation algorithm for this problem that has a good (polylogarith-
mic) approximation guarantee. We improve the approximation guarantee of their work, and present
further improvements for some important NP-hard special cases of this problem (e.g., in the preemp-
tive case where machines can suspend work on operations and later resume). We also present NC
algorithms with improved approximation guarantees for some NP-hard special cases.

Key words. Approximation, guarantees, job-shop, scheduling.

AMS subject classifications. 68Q25, 68R05.

1. Introduction. Job-shop scheduling is a classical NP-hard minimization prob-
lem [10]. We improve the approximation guarantees for this problem and for some of
its important special cases, both in the sequential and parallel algorithmic domains;
the improvements are over the current-best algorithms of Leighton, Maggs & Rao
[11] and Shmoys, Stein & Wein [21]. In job-shop scheduling, we have n jobs and m
machines. A job consists of a sequence of operations, each of which is to be processed
on a specific machine for a specified integral amount of time; a job can have more
than one operation on a given machine. The operations of a job must be processed
in the given sequence, and a machine can process at most one operation at any given
time. The problem is to schedule the jobs so that the makespan, the time when all
jobs have been completed, is minimized. An important special case of this problem is
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preemptive scheduling, wherein machines can suspend work on operations, switch to
other operations, and later resume the suspended operations (if this is not allowed,
we have the non-preemptive scenario, which we take as the default); in such a case,
all operation lengths may be taken to be one. Even this special case with n =m =3
is NP-hard, as long as the input is encoded concisely [16, 22]. We present further
improved approximation factors for preemptive scheduling and related special cases
of job-shop scheduling.

Formally, a job-shop scheduling instance consists of jobs Jy, Ja, ..., JJ,, machines
My, Ms, ..., My, and for each J;, a sequence of u; operations (M;1,t;1), (M;2,%;2)

b b

oy (Mj i, t5.,)- Each operation is a (machine, processing time) pair: each My
represents some machine M;, and the pair (M ;,¢; ;) signifies that the corresponding
operation of job J; must be processed on machine M ; for an uninterrupted integral
amount of time ¢; ;. No machine can process more than one operation at a time; the
operations of each given job must be scheduled in the given order. (For each job J;,
the waiting time from the completion of an operation (M, ;,t;;) until the scheduling
of (M} i+1,t),:+1) is allowed to be any non-negative amount.) The problem that we
focus on throughout is to come up with a schedule that has a small makespan, for
general job-shop scheduling and for some of its important special cases.

1.1. Earlier work. As described earlier, even very restricted special cases of
job-shop scheduling are NP-hard. Furthermore, the problem seems quite intractable
in practice, even for relatively small instances. Call a job-shop instance acyclic if no
job has more than one operation that needs to run on any given machine. A single
instance of acyclic job-shop scheduling consisting of 10 jobs, 10 machines and 100
operations resisted attempts at exact solution for 22 years, until its resolution by
Carlier & Pinson [6]. More such exact solutions for certain instances (with no more
than 20 jobs or machines) were computationally provided by Applegate & Cook, who
also left open the exact solution of certain acyclic problems, e.g., some with 15 jobs,
15 machines, and 225 operations [3]. The reader is referred to Martin & Shmoys for
a recent approach to computing optimal schedules for such problems [14].

Thus, efficient exact solution of all instances with, say, 30 jobs, 30 machines,
and 900 operations seems quite beyond our reach at this point; an obvious next
question is to look at efficient approximability. Define a p-approximation algorithm as
a polynomial-time algorithm that always outputs a feasible schedule with a makespan
of at most p times optimal; p is called the approximation guarantee. A negative
result is known: if there is a p-approximation algorithm for job-shop scheduling with
p < 5/4, then P = NP [23].

There are two simple lower bounds on the makespan of any feasible schedule:
Pihax, the maximum total processing time needed for any job, and Il;,,x, the maximum
total amount of time for which any machine has to process operations. Recall the
definition of acyclic job-shop scheduling given at the beginning of this subsection.
For the NP-hard special case of acyclic job-shop scheduling wherein all operations
have unit length, a breakthrough was achieved by Leighton, Maggs and Rao in [11],
showing that a schedule of makespan O(Pnax + Imax) always exists! (See Sections 6.1
and 6.2 of Scheideler [17] for a shorter proof of this result.) Such a schedule can also
be computed in polynomial time [12]. Feige & Scheideler have presented many new
advances in acyclic job-shop scheduling [8].

What about upper bounds for general job-shop scheduling? It is not hard to
see that a simple greedy algorithm, which always schedules available operations on
machines, delivers a schedule of makespan at most PpaxIlinax; one would however like
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to aim for much better. Let p = max; p; denote the maximum number of operations
per job, and let ppax be the maximum processing time of any operation. By invoking
ideas from [11, 19, 20] and by introducing some new techniques, good approximation
algorithms were developed in [21]. Their deterministic approximation bounds were
slightly improved in [18] to yield the following proposition. (To avoid problems with
small positive numbers, henceforth let logz denote log, z if x > 2 and 1 if z < 2;
similarly, let loglog z denote log, log, z if x > 4 and 1 if x < 4.)

PrOPOSITION 1.1. ([21, 18]) There is a deterministic polynomial-time algorithm
that delivers a schedule of makespan

log(mp)

0] Rn X Hm x) "7 17 N
(P + Ilme) log log(mp)

-log(min{mu, pmax}))

for general job-shop scheduling. If we replace m by n in this bound, then such a
schedule can also be computed in RNC. This is a p-approximation algorithm with
p = O(log(mpu) log(min{mp, pmax})/ loglog(mpu)). See [21, 9] for further results on
approximating some special cases of shop scheduling that are not discussed here.

1.2. Our results. Our first result improves Proposition 1.1 by a doubly loga-
rithmic factor and provides further improvements for important special cases.

THEOREM 1.2. There are the following deterministic algorithms for gemeral job-
shop scheduling, delivering schedules of makespan O((Ppax + max) - p):

(a) a polynomial-time algorithm, with

— 10g(mu) . IOg(min{mﬂapmax})
loglog(mp) loglog(mp) ’

and if we replace m by n in this bound, then such a schedule can also be
computed in NC,
(b) a polynomial-time algorithm, with

logm .
p= @ -log(min{mp, pmax }), and

(¢) an NC algorithm, with

logm :
g -log(min{nu, pmax })-

p= loglogm
Thus, part (a) improves on the previous approximation bound by a doubly loga-
rithmic factor. The impact of parts (b) and (c) is best seen for preemptive scheduling,
wherein pmax = 1, and for the related situations where ppax is “small”. Our moti-
vation for focusing on these cases is twofold. First, preemptability is known to be a
powerful primitive in various scheduling models, see, e.g., [4]. Second, the result of
Leighton, Maggs and Rao shows that preemptability is powerful for acyclic job-shops
(in the sense that there is a schedule of makespan O(Pmax + [Imax) in the preemp-
tive case). Recall that job-shop scheduling is NP-hard even when n = m = 3 and
Pmax = 1. Parts (b) and (c) of Theorem 1.2 show that, as long as the number of
machines is small or fixed, we get very good approximations. (It is trivial to get an
approximation factor of m: our approximation ratio is O(logm/loglogm) if pmax
is fixed.) Note that for the case in which pyax is small, part (c) is both a deran-
domization and an improvement of the previous-best parallel algorithm for job-shop
scheduling (see Proposition 1.1).



We further explore the issue of when good approximations are possible, once again
with a view to generalizing the result of Leighton, Maggs and Rao [11]; this is done
by the somewhat-technical Theorem 1.3. In the statement of the theorem, “with
high probability” means “with probability at least 1 — e, for a positive constant e.
The failure probability ¢ can be made arbitrarily small (exponentially small in the
size of the problem instance) by repeating the algorithm many times. Theorem 1.3
shows that if (a) no job requires too much of any given machine for processing, or
if (b) repeated uses of the same machine by a given job are well-separated in time,
then good approximations are possible. Say that a job-shop instance is w-separated
if every distinct pair ((Mj,¢,t5¢), (Mj,r,t;,+)) of operations of the same job with the
same machine (i.e., every pair such that M; , = M, ,) has |[{ —r| > w.

THEOREM 1.3. There is a randomized polynomial-time algorithm for job-shop
scheduling that, with high probability, delivers a schedule of makespan O((Pnax +
Max) - p), where

(a) if every job needs at most u time units on each machine then

_ logu log(min{m, pmax}) |
P= loglogu loglog u ’

(b) if the job-shop instance is w-separated and pmax = 1 then
p= 1 lfw Z log(Pmax + Hmax)/Q;

_ log(Pmax + Himax) otherwise.

w log(log(Pmax + Hmax)/w)’

Part (a) of Theorem 1.3 shows quantitatively the advantages of having multiple
copies of each machine; in such a case, we can try to spread out the operations of a
job somewhat equitably to the various copies. Part (b) of Theorem 1.3 shows that if
we have some (limited) flexibility in rearranging the operation sequence of a job, then
it may pay to spread out multiple usages of the same machine.

1.3. Main contributions. Most of our results rely on probabilistic ideas; in
particular, we exploit a “random delays” technique due to [11]. We make four contri-
butions, which we first sketch in general terms. The rough idea behind the “random
delays” technique is as follows. We give each job a delay chosen randomly from a suit-
able range and independently of the other jobs, and imagine each job waiting out this
delay and then running without interruption; next we argue that, with high probabil-
ity, not too many jobs contend for any given machine at the same time [11, 21]. We
then resolve contentions by “expanding” the above “schedule”; the “low contention”
property is invoked to argue that a small amount of such expansion suffices. The ap-
proach of [21] to this “expansion” problem is as follows. First, they present an upper
bound on the maximum amount of contention on any machine at any step, which is
shown to hold with high probability. Suppose we are given such a schedule, in which
at most s operations contend for any machine at any time. If all operations are of the
same length, this can be converted into a valid schedule by an s-fold expansion of each
time step. However, the operation lengths may be disparate. But we may round all
operation lengths up to the nearest power of two; thus, there will only be O(log pmax)
operation lengths. The approach of [21] is then to carefully decompose the sched-
ule into certain intervals such that within each interval, all operation lengths are the
same. These, along with some other ideas, constitute the “expansion” approach of
[21].



Our first contribution is a better combinatorial solution to the above expansion
problem, which leads to a smaller expansion than that of [21]. In particular, we do
not handle different operation lengths separately, but show a way of combining them.
The second contribution shows that a relaxed notion of “low contention” suffices:
we do not require that the contention on machines be low at each time step. The
first contribution helps to prove Theorem 1.2(a); parts (b) and (c) of Theorem 1.2
make use of the second contribution. We de-randomize the sequential formulations
using a technique of [2] and then parallelize. A simple but crucial ingredient of
Theorem 1.2 is a new way to structure the operations of jobs in an initial (infeasible)
schedule; we call this well-structuredness, and present it in Section 2. This notion
is our third contribution. Finally, Theorem 1.3 comes about by introducing random
delays and by using the Lovédsz Local Lemma (LLL) [7]. Although this is also done
in [11], our improvements arise from a study of the correlations involved and by using
Theorem 1.2(a). This study of correlations is our fourth contribution. The rest of this
paper is organized as follows. Section 2 sets up some preliminary notions, Section 3
presents the proof of Theorem 1.2, and Theorem 1.3 is proved in Section 4.

2. Preliminaries. For any non-negative integer k, we let [k] denote the set
{1,2,...,k}. The base of the natural logarithm is denoted by e as usual and, for
convenience, we may use exp(z) to denote e®.

As in [21], we assume throughout that all operation lengths are powers of two.
This can be achieved by multiplying each operation length by at most two. This
assumption on operation lengths will only affect our approximation factor and running
time by a constant factor. Thus, Punax, IImax and pmax should be replaced by some
Plox < 2Pnax, I x < 2Mmax, and plax < 2Pmax respectively, in the sequel. We
have avoided using such new notation, to retain simplicity.

2.1. Reductions. It is shown in [21] that, in deterministic polynomial time, we
can reduce the general shop-scheduling problem to the case where (i) pmax < nu, and
where (ii) n < poly(m, p), while incurring an additive O(Pyax + IImax) term in the
makespan of the schedule produced. The reduction (i) also works in NC. (Of the two
reductions, (ii) is more involved; it uses, e.g., an algorithm due to [20].)

Thus, for our sequential algorithms we assume that n < poly(m, u) and that
DPmax < poly(m, p); while for our NC algorithms we assume only that pmax < np.

2.2. Bounds. We use the following bounds on the expectation and tails of dis-
tributions.

FacT 2.1. [Chernoff, Hoeffding] Let X, Xs,..., X, € [0,1] be independent ran-
dom variables with X =3". X;. Then for any 6 > 0, E[(1+ §)¥] < IBIXI,

We define G (i, ) = (€ /(14 9)'+9)%. Using Markov’s inequality and Fact 2.1, we
obtain Chernoff and Hoeffding’s bounds on the tails of the binomial distribution (see
15)).

FacT 2.2. [Chernoff, Hoeffding] Let X, X5,..., X, € [0,1] be independent ran-
dom variables with X = 3", X; and E[X]| = p. Then for any 6 > 0, Pr[X > p(1+9)] <
G(p,0).

2.3. Random delays. Our algorithms use random initial delays which were
developed in [11] and used in [21]. A B-delayed schedule of a job-shop instance is
constructed as follows. Each job J; is assigned a delay d; in {0,1,...,B —1}. In the
resulting B-delayed schedule, the operations of .J; are scheduled consecutively, starting
at time d;. A random B-delayed schedule is a B-delayed schedule in which the delays
have been chosen independently and uniformly at random from {0,1,...,B—1}. Our
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algorithms schedule a job-shop instance by choosing a random B-delayed schedule
for some suitable B, and then expanding this schedule to resolve conflicts between
operations that use the same machine at the same time.

For a B-delayed schedule S, the contention, C(Mj;,t), is the number of operations
scheduled on machine M; in the time interval [¢,#+1). (Recall that operation lengths
are integral.) For any job J;, define the random variable X; ; + to be 1 if some operation
of J; is scheduled on M; in the time interval [¢,¢ + 1) by S, and 0 otherwise. Since
no two operations of .J; contend for M; simultaneously, C'(M;,t) = Zj Xi e If the
delays are chosen uniformly at random and B > Ilnax, then E[X; ;] is at most the
total processing time of .J; on M; divided by Ilmax. Thus, E[C(M;,t)] = >, E[X; ;] <
Omax/Imax = 1. We also note that the random variables {X; ;; | j € [n]} are mutually
independent, for any given ¢ and ¢. We record all this as follows.

Fact 2.3. If B > Max and S is a random B-delayed schedule then for any
machine M; and any time t, C(M;,t) = Zj X j.t, where the 0-1 random variables
{Xiji| € [n]} are mutually independent. Also, E[C(M;,t)] < 1.

2.4. Well-structuredness. Recall that all operation lengths are assumed to be
powers of two. We say that a delayed schedule S is well-structured if for each k, all
operations with length 2% begin in S at a time instant that is an integral multiple
of 2¥. We shall use the following simple way of constructing such schedules from
randomly delayed schedules. First create a new job-shop instance by replacing each
operation (Mj ¢,t;.¢) by the operation (M;e,2-t;¢). Suppose S is a random B-delayed
schedule for this modified instance, for some B; we will call S a padded random B-
delayed schedule. From S, we can construct a well-structured delayed schedule, S’,
for the original job-shop instance: simply insert (M;,¢;,) with the correct boundary
in the slot assigned to (M;;,2-t;;) by S. §' will be called a well-structured random
B-delayed schedule for the original job-shop instance.

3. Proof of Theorem 1.2. In this section we prove Theorem 1.2. In Section 3.1
we give a randomized polynomial-time algorithm that proves part (b) of the theorem.
In Section 3.2 we improve the algorithm to prove part (a). Finally we discuss the
derandomization and parallelization of these algorithms in Section 3.3. Throughout,
we shall assume upper bounds on n and pnax as described in Section 2.1; this explains
terms such as log(min{mg, pmax}) in the bounds of Theorem 1.2. Given a delayed
schedule S, define C(t) = max; C(M;,1).

LemMA 3.1. There is a randomized polynomial-time algorithm that takes a job-
shop instance and produces a well-structured delayed schedule which has a makespan
L < 2(Phax + Omax). With high probability, this schedule satisfies:

(a) Vie [m)Vte{0,1,...,L -1}, C(M;,t) <a, and

(0) 1% Ct) < B(Prax + Timax),
where a = ¢1 log(mpu)/loglog(mpu) and 8 = cologm/loglogm, for sufficiently large
constants ci,co > 0.

Proof. Recall that all operation lengths are assumed to be powers of 2. Let
B = 2[l,,x and let S be a padded random B-delayed schedule of the new instance,
as described in Section 2.4. S has a makespan of at most 2(Ppax + Imax). Let S’ be
the well-structured random B-delayed schedule for the original instance that can be
constructed from S, as described in Section 2.4. The contention on any machine at
any time under S’ is clearly no more than under §. Thus in order to show that S’
satisfies (a) and (b) with high probability, it suffices to show that S has this property.
We will prove this now.



Part (a). The following proof is based on that of [21]. Fix any positive integer k,
and any M;. For any set U = {uy, ua,...,u;} of k units of processing that need to be
done on M;, let Collide(U) be the event that in S all these k units get scheduled at
the same unit of time on M;. It is not hard to see that Pr[Collide(U)] < (1/B)" .
(If wi,...,ug are from different jobs then Pr[Collide(U)] < (1/B)*~'. Otherwise,
Pr[Collide(U)] = 0.) Recall that B = 2IInax. Since there are at most (QH;C““") ways of
choosing U, we get

(1/(2HIIIHX))k_1a

Pr[3t: C(M;,t) > k] = Pr[aU : Collide(U)] < <2H,‘j )

and so Pr[3t: C(M;,t) > k] < 2TIpax/k!. Thus,
Pr[3t 3i: C(M;,t) > k] < 2mIpax/k!.

But Mphax < npPmax,; which by our assumptions in Section 2.1 is poly(m, u). Since
[a]! > (mp)°/? for sufficiently large m or u, we can satisfy (a) with high probability
if we choose ¢; sufficiently large.

Part (b). Let v = (Be/2, where € is the desired constant in the probability bound.
Let the constant cs in the definition of 5 be sufficiently large so that v > 1. Fix any
M; and t, and let A = E[C(M;,t)]. (By Fact 2.3, A < 1.) By Fact 2.1, with 1+6 =,

E[fyO(Mi;t)} < DA « gr=1)

Hence, for any given £,

B1)  BROW] = By O] < B3 4C00] = 3 B0t
i€[m] i€[m]

< me’ 1.

Since the function z — 4% is convex, by Jensen’s inequality we get that E[y¢®)] >
AEICO] If we choose ¢, sufficiently large then 77 > me?~!'. Combining these
observations with bound (3.1), we get E[C(t)] < 7. By linearity of expectation,
E[>, C(t)] < 29(Puax + IImax) and finally, by Markov’s inequality, we have

PI‘[Z C(t) > B(Rnax + Hmax)] S 2’}//6 — €.

O

3.1. Proof of Theorem 1.2(b). Recall that our goal is a polynomial-time
algorithm which delivers a schedule with makespan O((Pnax + Mmax) - l(fﬁofé”—m .
log(min{mu, pmax})). Assume S is a delayed schedule satisfying the conditions of
Lemma 3.1 with makespan L = O(Ppax + Imax). We begin by partitioning the sched-
ule into frames, i.e., time intervals {[ipmax; (4 + D)Pmax), i = 0,1, ..., [L/Pmax| — 1}.
By the definition of pyax and the fact that S is well-structured, no operation straddles
a frame. For example, see Figure 3.1.

We construct a feasible schedule for the operations performed under schedule S for
each frame. Concatenating these schedules yields a feasible schedule for the original
problem. We give the frame-scheduling algorithm where, without loss of generality,
we assume that its input is the first frame.
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Let T be a rooted complete binary tree with ppyax leaves. For every node u of T,
let I(u) and r(u) be the labels, respectively, of the leftmost and rightmost leaves
of the subtree rooted at u. We shall associate the operations scheduled during the
frame with the nodes of T in a natural way. For i = 1,...,m we define S;(u) to
be those operations that are scheduled on M; by S for precisely the time interval
[[(u),r(u) + 1); each operation scheduled by S in the first frame is in exactly one
S;i(u). For example, see Figure 3.2. Let p(u) = (r(u) — l(u) + 1) - max; ||S;(u)||, where
||S;(u)|| denotes the cardinality of S;(u). p(u) is the amount of time needed to perform
the operations associated with u. For example, see Figure 3.3. Let the nodes of T
be numbered as up,us,... in the preorder traversal of T'. Define f(u;) = 0 and for
J > 2, let f(u;) = > ,;p(ug). For example, see Figure 3.4. The algorithm simply
schedules the operations in S;(u) on machine M; consecutively beginning at time
fw) + 1 and concluding by the end of timestep f(u) + p(u). Let S’ be the resulting
schedule. For example, see Figure 3.5. Note that our algorithm does not necessarily
give the same schedule as the algorithm of Shmoys, Stein and Wein. For instance, our
algorithm produces a different schedule than the one that their algorithm produces
on the example given in [21]. Part (b) of Theorem 1.2 follows from Lemma 3.1 and
the following lemma.

LEMMA 3.2. S is feasible and has makespan at most ), . p(u), which is at
most (1 + 10gs Pmax) - ?‘:"g’rl C
t under schedule S.

Proof. By construction, no machine performs more than one operation at a time.
Suppose O; and O, are distinct operations of job J scheduled in the first frame.
Assume O; € S;(u) and Oy € S;(v), where possibly ¢ = j. Assume O; concludes
before Oy begins under S; thus u and v are roots of disjoint subtrees of T' and u
precedes v in the preorder traversal of T. Thus O; concludes before O3 begins in S’
and the new schedule is feasible.

Clearly the makespan of S’ is at most »_ ., p(u). Fix a node u at some height
kin T. (We take leaves to have height 0.) Then p(u) = 2* max; ||S;(u)||. Since the
maximum number of jobs scheduled at any time ¢ on any machine under S is C(t),
we get that Vt € [[(u),...,r(u)], max; ||S;(u)|| < C(t). Thus,

(j), where C(t) is the mazimum contention at time

p(w) <2 max|ISiw)[[ < D OO

Since each leaf of T has (1 + log, pmax) ancestors, the makespan of S’ is at most

Pmax—

Yorw <SS Y =1+ logpmn) - Y. ClD).

u€T ueT te[l(u),...,r(u)]

O

3.2. Proof of Theorem 1.2(a). Recall that our goal is a polynomial-time
log(mu)

algorithm which delivers a schedule with makespan O((Ppax + Mmax) - TogTog(mp]

[log(min{mu,pmax})
log log(mu)
that the feasible schedule for each frame has makespan O(pmax@ [10g(Pmax)/ logal),
where a = ¢; log(mu)/loglog(mpu) as in Lemma 3.1. Without loss of generality, we
assume that a is a power of 2 (by increasing it if necessary). Thus, under the assump-

tions from Section 2.1, the final schedule satisfies the bounds of Theorem 1.2(a).
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The difficulty with the algorithm given in Section 3.1 is that the operations may be
badly distributed to the nodes of T' by S which would make S’ inefficient. To clarify,
consider the example given in Figures 3.1-3.5. In this case, node wuy¢ is assigned
operations C' and K and node u;; is assigned operation H. The algorithm schedules
operations C' and K before operation H. However, since H is on a different machine
from C and K, it could have been scheduled to overlap C or K. In this section,
we show how to overcome this problem by “pushing down” operations C and K to
nodes u1; and uqs.

The algorithm that we describe here starts with the allocation of operations to
nodes of T that is defined in Section 3.1. That is, S;(u) is taken to be the set of
operations that are scheduled on M; by S for time interval [I(u),r(u) + 1). The
algorithm then chops T into disjoint subtrees in a manner described below. For each
subtree, it re-distributes the operations that are allocated to the nodes of the subtree
by “pushing” some operations from parents to children (in a manner which will be
described shortly). After the re-distribution, R;(u) is the set of machine-i operations
that are allocated to node u. p(u) is then taken to be the maximum over all 4, of
the sum of the lengths of the operations in R;(u). The algorithm then finishes the
algorithm of Section 3.1: the p-values computed for each node are used to compute
f(v) (for every node v). Then the operations in R;(v) are scheduled beginning at time
f(v) + 1 and concluding by the end of timestep f(v) + p(v).

The partitioning of T' is done by removing all edges from parents with height
equal to 0 modulo loga. (Thus, every resulting subtree 7' has height at most log «.)

Let lg denote the logarithm to the base 2. (In some places below, we will not be
able to use log z since, as defined by us, logx does not always equal the logarithm of
x to the base 2. So we need 1g.)

The re-distribution of operations for subtree T" proceeds in a top-down manner,
independently for each machine M;. We will illustrate the process with the job-shop
instance in Figure 3.6, where we assume (for descriptive purposes) that 7' has only
one sub-tree 7’. Start at the root, uy, of T'. Suppose that u; has h operations
allocated to it. (In this case, h = 3.) Let h' = 2181 (in this case, A’ = 4) and
allocate h' — h dummy operations () to T' as in Figure 3.7. (The reason for adding
the dummy operations is to make the number of operations at the root equal to a
power of 2.) If the height of the subtree rooted at u; (in this case, 2) is at least 1g(h')
(which is also 2 in this case), then the h' operations originally allocated to u; are
re-allocated to the h' nodes that are at distance lg(h') below u as in Figure 3.8. Next,
the operations are further re-allocated recursively in the subtrees below u; (in this
case, the operations are recursively re-allocated in the subtrees rooted at u» and wus).
If, in one of these recursive calls, the height, k, of the subtree being considered is
less than 1g(h') (where h' is the number of originally allocated operations at the root,
counting dummy operations) then h’/2* of the operations originally allocated to the
root are re-allocated to each of the leaves. For example, in the recursive call on the
subtree rooted at us in Figure 3.8, h' = 4 (because a dummy operation is added to
us to make the number of operations a power of 2) and the height, k, of the subtree
below usy is 1. Thus, h'/2! operations are pushed from us to each of its children as
in Figure 3.9. The recursive call at uz and the recursive calls at the leaves do not
further re-distribute operations.

A more formal description of the pushdown algorithm is as follows. As above,
we assume that ||S;(v)|| is a power of two for all ¢ and v; furthermore, although we
will push some operations down the tree, S;(v) will throughout refer to the original

9



set of operations scheduled on M; for the time interval [I(v),r(v) + 1). First partition
the tree T into disjoint subtrees, by removing all edges from parents with height
equal to 0 modulo log . We then proceed independently for each subtree T' that is
produced from the partition, and for each machine M;, by calling a recursive procedure
pushdown(7", ), which we describe now. Given a binary tree T" with root u and a
machine index 4, pushdown(T",%) is as follows. If T" is a leaf, the procedure does
nothing. Otherwise, suppose ||S;(u)|| = h', with A’ being a power of two. If the
height &k of T" is at least lg(h'), then the h' operations of S;(u) are re-allocated to
the h' nodes that are at distance 1g(h') below u; else if k < Ig(h'), then h'/2* of the
operations in S;(u) are re-allocated to each of the leaves of T". Finally, we recursively
call the procedure on the left and right subtrees of T".

Note that if the new algorithm is applied to the problem instance from Figures 3.1—
3.5 then the makespan is reduced by one, because operations C and K are pushed
down to the leaves so operation H is scheduled to overlap operation C.

Let S’ denote the schedule produced (from S) by the new algorithm.

LEMMA 3.3. S’ is a feasible schedule with makespan O(pmaxa[10g Pmax/ logal).

Proof. The proof that S’ is feasible follows exactly as before. The makespan of
S' is no more than }_ .. p(u).

Consider a subtree T of the partition. Assume the leaves of T" are at height j in
T. Let w be a node in T” and let V' be the subset of nodes of T" consisting of w and
its ancestors in T".

First suppose w is a leaf. Let v be a node in V' and assume that v has height &
in 7" with ||S;(v)|| = h. (See Figure 3.10.)

Then v contributes at most 218"1 /2% operations to R;(w) and each has length
29tk The time needed to perform these operations is 2/18"1=k . 2i+k — 9[lghl+i By
Lemma 3.1, part (a), >, cy |[Si(v)]| < 2a. (The factor of 2 arises from the (possible)
padding of S;(v) with dummy operations.) Thus p(w) < 2/*!a.

Now suppose w is at height » > 0 in 7". (See Figure 3.11.) A node v € V at
height r+4k in 7" contributes at most one operation to R;(w) and its length is 2/+++7,
Thus p(w) < Y87 20HkHr < 95t q,

Thus, if node w is at height 7+ 7 in T" and is in the layer of the partition containing
T', then p(w) < 2/F1q; also, there are pmax /2777 nodes at this height in 7. The sum
of these p(w)’s is thus at most 2apmax/2". Each layer therefore contributes at most
4aPmax, and there are [(log pmax)/(log a)] layers. Thus ) - p(v) satisfies the bound
of the lemma. O

3.3. Derandomization and parallelization. Note that all portions of our
algorithm are deterministic (and can be implemented in NC), except for the setting
of the initial random delays, which we show how to derandomize now. The method
of conditional probabilities could be applied to give the sequential derandomization,
however that result will follow from the NC algorithm that we present. We begin with
a technical lemma.

LEMMA 3.4. Let x1,%2,...,x, be non-negative integers such that )", x; = la, for
some a > 1. Let k < a be any positive integer. Then, Zle )= (5).

Proof. For real z, we define, as usual, (}) = (z(z —1)---(z — k+ 1))/kl. We
first verify that the function f(z) = (z) is non-decreasing and convex for z > k, by
a simple check that the first and second derivatives of f are non-negative for z > k.
Think of minimizing Y, (/) subject to the given constraints. If z; < (k — 1) for
some i, then there should be an index j such that z; > (k + 1), since >, z; > (k.
Thus, we can lessen the objective function by simultaneously setting z; := z; + 1 and
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z;j = z; — 1. Hence we may assume that all the integers z; are at least k. By the
convexity of f for = > k, we see that the objective function is at least Y°_, (4). 0

Define, for z = (21, 22, ..., 2z,) € R", a family of symmetric polynomials S;(z),j =
0,1,...,n, where Sp(2) =1, and for 1 < j < n, S;(2) = Zl§i1<i2w<i]‘§n i) Ziy * 2
We recall one of the main results of [2] (this is not explicitly presented in [2], but is an
obvious corollary of the results of Section 4 in [2]). In the statement of Proposition
3.5, the function G refers to the one introduced in Section 2.2. Namely, G(u,d) =
(/1 + )10,

PROPOSITION 3.5. ([2]) Suppose we are given m independent random variables
Yi,---Ym, each of which takes values uniformly in R = {0,1,...,2% — 1} where
b = O(logN); N here is a parameter that roughly stands for “input length”, and
m = N, Suppose we are also given, for each j € [m], a finite set of binary
random variables {z;, 1t =1,2,...} where z;; is 1 if and only if y; lies in some fized
subset Ry of R. Also given are r random variables

Ui = sz,f(i,j)u i € [r],
j=1

where f is some arbitrary given function. If E[U;] < 1 for each i, then given any
positive integer k such that k = O(log N), we can find, deterministically using NO)
processors and O(logo(1> N) time on the EREW PRAM, a setting y; := w1, ...,Ym =
W, such that

Z Se(21,1(i1)s - -+ Zmopiom)) STG(LE=1)(14+N7°),
i€lr]

for any desired constant ¢ > 0.

In our setting, the random variables y; are the initial random delays of the jobs.
It is easy to verify that each random variable C'(M;,t) is of the form of some U; in
the notation of Proposition 3.5. By giving the initial random delays in the range
{0,1,..., 2 nax } instead of from {0,1,..., 2l hax — 1}, we can ensure the condition
E[U;] < 1 of Proposition 3.5 (E[C(M;,t)] < 2Hmax/(2lmax + 1) now). Let o and S
be as in Lemma 3.1, and note that both are logarithmically bounded in the length
of the input, as required for the parameter k& in Proposition 3.5. Let the random
variables X; ;; be as in Fact 2.3. From the proof of part (a) of Lemma 3.1, we see
that )., G(1,a — 1) is smaller than 1; thus, by Proposition 3.5, we can find a setting
@ for the initial delays in NC such that

(3.2) > Sa(Xing, Xings o Xia) < 1.
it

If the congestion of some machine M; at some ¢t were at least a due to the above
setting of the initial delays to ), then the left-hand-side of (3.2) would be at least 1,
contradicting (3.2). Thus, we have an NC derandomization of Theorem 1.2(a).

As for Theorem 1.2(b), we can similarly find an NC assignment of initial delays
w such that

(3.3) > Ss(Xine: Xigg s Xint) = O((Pmax + Mmax)mG(1, 8 — 1))
it

= O((Pmax + Hmax))~
11



Let C(t) be the (deterministic) maximum contention at time #, due to this setting.
Note that

( ) ZSB i,1,t 22t--~-;Xi,n,t)-

Thus, by (3.3), we see that

Et: (Cét)> = O((Pmax + Mmax))-

We invoke Lemma 3.4 to conclude that )", C'(t) = O((Pmax + Imax)3); thus, we have
an NC derandomization of Theorem 1.2(b).

We remark that the work of Mahajan, Ramos & Subrahmanyam [13] could also
be used to obtain an NC derandomization.

4. Proof of Theorem 1.3. We now set about to prove Theorem 1.3; we are
very much motivated here by the framework of [5, 1, 12] and of Section 6.1 of [17].
The new ideas we need are due to the two basic ways in which job-shop scheduling
generalizes packet routing: both acyclicity and the “ppna.x = 17 condition can be
violated. Theorem 4.3 is used first (in the next subsection) and proved later; this is
to help the reader get to some of the new ideas quickly. The algorithms are shown in
Sections 4.2 and 4.3.

4.1. Preliminary results. We start with a standard fact about the function G
of Section 2.2, where G(u, ) = (e /(1 + §)1 o)~

FacT 4.1. (a) If 6 € [0,1], then € /(1 + 6)1F9) < e=0°/3 (b) If 0 < iy < po,

then for any 8 > 0, Glur, 128/ 11) < Glyiz,6).

Proof. (a) The proof follows from observing that the function & — In(e=%/3(1 +
§)1+9e=9) is 0 when § = 0, and that its derivative is In(1 + &) — 26/3 which is
non-negative for § € [0,1].

(b) We need to show that

pad

Ju
(1+5 14-(52 1+u_26> i1 1’

i.e., that ®(v) = (1 +vd)In(1 + vd) —v(1 4+ ) In(1 +d) > 0 for all v > 1. We have
®(1) =0; ®'(v) = 6+6In(14+vd)—(14+6) In(1+4). Forv > 1, ®'(v) > §—In(1+4) > 0.
a

The next lemma follows from [18].

LEMMA 4.2. ([18]) Let Xy,..., X, € {0,1} be random variables such that, for
any set T C {1,2,...,¢}, Pr[/\leT(X = 1)] < [I;er Pr[X: = 1]; informally, the X;
are “negatively correlated”. Then if X = ), X; with E[X] < u, we have, for any
6 >0, Pr[X > p(1+96)] < G(p,9).

Suppose we are given a job-shop instance I. A delayed schedule S for I is any
“schedule” in which each job J; waits for some arbitrary non-negative integral amount
of time d;, and then gets processed continuously. (Thus, S is a delayed schedule if and
only if there exists some non-negative integer B such that S is a B-delayed schedule.)
Suppose, for some non-negative integer B, we choose integers di, ds, . . ., d; uniformly
at random and independently, from {0, 1, ..., B'=1}. The (random) schedule obtained
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by giving an initial delay of d; (in addition to the d; above) to each job J;, will
be called a random (B',S)-delayed schedule. Note that this also will be a delayed
schedule.

We require a few more definitions related to S as above. Suppose L denotes
the makespan of §. Then, given an integer £, an f-interval is any time interval of
the form [t,t + £), where ¢ is an integer such that 0 < ¢t < L — 1. We denote the
interval [t,t + €) by F;. The contention of machine M; in interval Fy in the schedule
S, denoted Cs (i, k), is the total processing time on M; within Fy, in the schedule
S. (Suppose, for instance, an operation O of length £ + 2 uses M; and is scheduled
to run on M; in the interval [¢t,¢ + £+ 2), in S. Then, for example, O contributes a
value of £ to Cs ¢(i,t) and a value of three to Cs (i, t +£—1).)

Given any integers ji, j» such that 1 < j; < jo < n, we let C§ (4, k, j1, j2) denote
the total processing time on machine M; in the interval F}, in the schedule S that is
imposed by jobs Jj,, Jj,+1,...,Jj,. (In particular, C% ,(i,k,1,n) = Cs (i, k).)

Given a delayed schedule S, we call S an (L, ¢, C);schedule if and only if:

e the makespan of S is at most L, and
e for all machines M; and all ¢-intervals Fy, Cs (i, k) < C.
We emphasize that this notation will be employed only for delayed schedules.

We start with Theorem 4.3, which will be of much help in proving Theorem 1.3.
Given an (L, ¥, Cy)-schedule for a job-shop instance, Theorem 4.3 shows a sufficient
condition under which we can efficiently construct an (L + B, /', C1)-schedule for
appropriate values of B,¢' and C;. In most of our applications of the theorem, we
will have: (i) ¢/ <« ¢, (ii)) B <« L, and (iii) C sufficiently small so that the new
“relative congestion” Cj/¢' is not much more than the original relative congestion
Co/L. Thus, by slightly increasing the makespan of the delayed schedule, we are able
to bound the relative congestion in intervals of much smaller length (note from (i)
that ¢ < ¢). Appropriate repetitions of this idea, along with some other tools, will
help us prove Theorem 1.3.

For convenience, we define ™ = max(z, 0).

THEOREM 4.3. There is a sufficiently large constant c3 > 0 such that the following
holds. Suppose S is an (L,{,C)-schedule for a given job-shop instance I, for some
L,¢,C. Let non-negative integers £' < £ and B < £ —{' + 1 be arbitrary; let S’ be a
random (B,S)-delayed schedule.

Suppose & > 0 is such that for all integers i € [m], 0 < k < L+ B -1 and
1<jh <ja<n,

!

Pr[cglg’,[’ (ivk:jl:jQ) > % ’ (019/(1 (k - B+ 1)+:j1:j2) + 06)] < (maX{Lvac})_cs'
Then there is a Las Vegas algorithm to construct an (L+ B, ¢, %[’ -(1+30))-schedule
for I; the expected running time of the algorithm is poly(m,L,f,C). The proof of
Theorem 4.3 will be presented in Section 4.5. Using ideas from our earlier proofs, we
obtain the following corollary.

COROLLARY 4.4. For general job-shop scheduling, there is a polynomial-time Las
Vegas algorithm to construct a schedule of makespan

] log(Pmax + Hmax) . ’V log(min{mﬂ:pmax}) —‘>
log1og(Pmax + Imax) | 10g10g(Pmax + Mmax) |/

0 ((Pmax )
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Proof. Let I be a job-shop scheduling instance with associated values Ppax and
Moy define L = 2P0, and B = 211 ,,,. Let I’ be the modified instance formed by re-
placing each operation (Mj i, t; ) by the operation (M; j,2-t; ). We trivially have an
(L, B, B)-schedule S for I'. Choose A = ¢'log(Pnax + Hmax)/ 10glog(Pmax + max);
¢’ is a suitably large constant as specified below.

Let S’ denote the random (B, S)-delayed schedule. From the proof of Lemma 3.1
(a), we find that Pr[C& ,(i,k,j1,j2) > A] < (max{L,B,C})~° will hold for all
ik, j1,j2, by making ¢ large. Thus, by setting ¢/ = 1 in Theorem 4.3, we can
efficiently find an (L+ B, 1, Cp)-schedule for I', where Cy = O(A). So we can efficiently
construct a well-structured schedule for I w1th makespan O(Ppax + Hnax) in which,
for all machines M; and time steps t, the number of operations scheduled on machlne
M; in the time interval [¢,t + 1) is at most O(A). The corollary now follows from the
proof of Theorem 1.2(a) by using this fact in place of Lemma 3.1. O

We now present Lemma 4.5, which shows a way of using Theorem 4.3. The notion
of “w-separated” in its part (b), is as defined in Section 1.2. Namely, every distinct
pair of operations of the same job with the same machine has at least w— 1 operations
between them.

LEMMA 4.5. (a) Consider any job-shop instance I in which any job needs at
most u units of processing on any machine. Suppose S is some (L, L, C)-schedule for
I. For non-negative integers £' < £ and B < £—{0'+1, suppose S' denotes the random
(B, S)-delayed schedule. Then, for any § > 0 and dall i, k, j1, jo,

!

Pr{Ch (i ko) > 5 (Chali, (k= B+ 1)* . o) + 09)] < G(OF/(Bu),b).

(b) Suppose I is a w-separated job-shop instance with pmax = 1, and that S denotes the
(unique) O-delayed schedule for I. Let S' denote the random Tax-delayed schedule
for I. Then, for any 6 > 0 and all i, k, j1, jo,

Pr[C%, (i, k, 41, j2) >

' (CZG,HmaX+w71(i7 (k - HIHHX + 1)+7jlaj2) + Hmax6)]
< G(w,9).

max

Proof. To have some common notation for parts (a) and (b), we define the fol-
lowing quantities for (b). First, in (b), S is a (Pmax,¥, C)-schedule, where, e.g.,
¢ = pax + w— 1 and C = Myax. Also, in (b), &' is the random (B, S)-delayed
schedule, where B = Il,,5x; we also set ¢/ = w in (b). Note that the conditions ¢’ < ¢
and B < ¢ — ¢ + 1 now hold for (b) also.

We now make some observations common to (a) and (b). Fix i,%,j1,j2. Since
all new delays introduced by S’ lie in {0,1,..., B — 1}, the only units of processing
that can get scheduled on M; in the interval [k, k + ¢') in &', are those that were
scheduled on M; in the interval Z = [(k — B+ 1)",k +{') in S. Note that the length
of 7 is at most £/ + B — 1 < £. For each job J;, number its single units of processing
scheduled on M; in 7 in S, as Uj1,Ujp,.... Since the length of 7 is at most /,
the definition of C’ shows that the number of such units for each job Jj;, is at most
C:S‘,é(iv (k -B + 1)+7]J)

Let X ; be the indicator random variable for U;; getting scheduled in the interval
[k, k+¢')in S'. We have

(4.1) Csi o (6K, 1, J2) Z Zth

J=i1
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Since E[X;,] < ¢'/B for each j,t, we have

(4.2) v =E[Ck (i k, j1,j2)] < Zj (Cl (i, (k—B+1)*,j,j)¢'/B)

= Cglg,é(i: (k -B+ 1)+:j1:j2)él/B'

We now handle part (a). By (4.1), C" = Cg, (i, k, j1, j2) /u is at most Zf:jl Y;,
where V; = u™' Y, X; ;. By the definition of u, ¥; < 1 for each j. So the random
variables {Y; : j € [j1,j2]} lie in [0, 1], and are independent. A Chernoff-Hoeffding

bound shows for any ¢’ > 0 that
(4.3) Pr[Cl o (isks 1, 2) > v(1 + )] = PrC" > (v/u) - (1 4+ )] < G(v/u, ).

Next, Cg (i, (k — B + 17, 41,52) < C, since S is an (L, ¢, C)-schedule. So, applying
(4.2) and Fact 4.1(b) to (4.3) completes the proof for part (a).

For part (b), consider any job J;. Since ¢’ = w here, the definition of w-separated
shows that we cannot have X;; = X, = 1, if t # t. This easily leads us to see that
the random variables {X;, : j,t} are negatively correlated, in the sense of Lemma
4.2. So, an application of Lemma 4.2 and Fact 4.1(b) to (4.1) and (4.2) completes the
proof for part (b). O

We will next use these results to prove Theorem 1.3, in Sections 4.2 and 4.3.

4.2. Proof of Theorem 1.3(b). Recall that we are considering any w-separated
job-shop instance I with ppax = 1 now. Let S be the 0-delayed schedule for I. Thus,
S is a (Pnax, £, C')-schedule, where, e.g., £ = Il;ax + w — 1 and C = Iax. Also let
S’ be the random (B,S)-delayed schedule, where B = Il ax; ie., S is the random
B-delayed schedule for I. Define ¢' = w.

We can ensure that G(w,d) < (Ppax + IImax) %, by choosing (i) § = ¢ if w >
log(Prax + Hmax)/2, and (ii) § = ¢ log(Pmax + Hmax )/ (w log(log(Pmax + Mmax)/w))
if w < 10g(Pmax + Mmax)/2, for some suitably large constant ¢’. By Lemma 4.5(b) and
Theorem 4.3, we can then efficiently construct a (Pmax + Hmax, w, w(1+ 36))-schedule
8" for I. We partition S into [(Pmax + IImax)/w] intervals each of length w; crucially,
each of these intervals (subproblems) is an acyclic job-shop instance. Also, in each
of these subproblems, ppax = 1, and any machine has at most w(1 + 3J) operations
to be scheduled on it. Via the result of [12], each subproblem can be efficiently
scheduled with makespan O(w + w(1 + 6)) = O(w(1 + 8)). We then concatenate all
these schedules, leading to a final makespan of O((Pmax + Hmax)(1 + 9)).

4.3. Proof of Theorem 1.3(a). Recall that our goal is to show the existence of

a schedule with makespan O((Ppax + Himax) * log’lgogu . [log(mﬁﬁéﬁg’ﬁm“})b, assuming

that every job needs at most u time units on each machine. We assume that u > 2.
Indeed, if u = 1, then we have an acyclic job-shop instance with pyax = 1; so we will
be able to efficiently construct a schedule of length O(Ppax + Imax) [11, 12]. The
algorithm is presented in Section 4.3.2; we start with a useful tool.

4.3.1. L'-splitting. Suppose we are given an (L, ¢, C)-schedule S for a job-shop
instance I, and want to split it into subproblems each of makespan at most L', where
Pmax < L' < L. If pmax = 1, this is easy, as seen in Section 4.2. Consider the case
where pmax is arbitrary. We now show a simple way of partitioning the operations
of S into at most [L/(L" — pmax)]| subproblems Py, Ps,.... We will also output an

15



(L', £, C)-schedule S; for each P;. These subproblems will be such that they can
be solved independently and the resulting schedules concatenated to give a feasible
schedule for I. This “L’-splitting” process is as follows.

We consider all operations that are completely finished by time L' in S; scheduling
this set of operations becomes our first subproblem P;. S provides a natural (L', ¢, C)-
schedule &; for P;. If we have covered all operations by this process, we stop; if not,
we define the next subproblem Ps as follows. Define t; = 0. Let t5 be the smallest
integer such that: (i) t2 < L', and (ii) there is some operation O starting at time 5 in
S, such that O is not completely finished by time L'. (Note that L' —ppax < t2 < L'.)
Our second subproblem P, consists of all operations: (a) finishing by time ¢o + L'
in S, and (b) not covered by P;. The time interval [t2,t2 + L') in S provides an
(L', £, C)-schedule Sy for Ps in the obvious way. Once again, if we have not covered
all operations, we define #3 to be the smallest integer such that: (i) t3 <ty + L', and
(ii) there is some operation O starting at time ¢3 in S, such that O is not completely
finished by time o + L'. We have t3 > t3 + L' — pmax; thus t3 > 2(L' — pmax). Ps
consists of all operations finishing by time t3 + L' that were not covered by P; and
P>. We iterate this until all operations are covered.

In general, we have t;11 > #(L' — pmax); so the total number of subproblems
created is at most [L/(L' — pmax)]. It is also easy to see that we have an (L', ¢, C)-
schedule S; for each P;. Also, the subproblems can be solved independently and the
resulting schedules concatenated to give a feasible schedule for I.

4.3.2. Algorithm and analysis. We choose a sufficiently large positive con-
stant bg. Define Ly = Ppax + Hmax, and L; = log L;_; for i > 1. We repeat this
iteration until we arrive at a t for which either L;11 > Ly, or Ly41 < 36b3. (Thus, the
iteration proceeds for O(log" (Pmax + IImax)) steps.) Also, for 1 < i < ¢, define

. _bo_ bo_y. L
(4.4 Ci_L§(l+\/L_1)j1;[1((1+ \/m) 1—(Lj+1/Lj)3).

Recall that L; > 36b2 for 1 <4 < t. If by is large enough, we have

i b i—1 L.
3 0 J+1.3 3 3
(4.5) C; < Ljexp (E \/T) + O( E (=7 )7) ) < Liexp(3bo/+/Li) < 2L7.
j=1 J j=1 J

The second inequality follows from the fact that the terms Lj_1 increase exponentially,
with L7 < (36b3) " and by sufficiently large.

The algorithm is as follows. First, if u? > Pnax + Ilmax, then Corollary 4.4 shows
that we can construct a schedule of makespan as claimed by Theorem 1.3(a). So
suppose u? < Ppay + Hmax. The algorithm consists of a preprocessing step and a
general (recursive) step, motivated by the approach of Section 6.1 of [17].

Preprocessing step. We start with the obvious (Pmax, £, Imax)-schedule S, where
£ can be taken arbitrarily large.

We first handle the case where w > byL;. We call this the “simple case”.
Define ¢/ = u?, B = Ilyax, and § = 1. If by is large enough, then G(u,d) <
(Pmax + Dmax) ™. Thus, by Lemma 4.5(a) and Theorem 4.3, we can efficiently con-
struct a (Puax + Mmax, 2, 4u?)-schedule S’. We apply u2-splitting to &', as defined
in Section 4.3.1. Since u > 2 and pmax < u, the total number of subproblems is at
most [(Puax + Mmax)/(4? — pmax)] < O((Pmax + Omax)/u?). Also, each of the sub-
problems has “Ppax” at most u? and “IlI.,." at most 4u?. So, by Corollary 4.4,
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each of these subproblems can be efficiently given a valid schedule of makespan

1 i max .
O (u2. Jogu_ . |log(min{mupmax}h) 1) Ag seen above, the number of subproblems is
loglog u loglog u ’

O((Pmax + Hmax)/u?), so the concatenation of these schedules yields a final schedule
of makespan as claimed by Theorem 1.3(a).

We now move on to the more interesting case where u < bgL;. We define ¢' =
L3, B = Myayx, and 6 = by/(3v/Ly). By Fact 4.1(a) and since u < byL;, we have
G(l'[u,d) < exp(—boL1/27), which can be made at most (Ppax + Imax) ™ if bg
is chosen sufficiently large. By Lemma 4.5(a) and Theorem 4.3, we can efficiently
construct a (Puax + Imax, L3, C1)-schedule S’. (See (4.4) for the definition of the
C;.) We apply Li-splitting to S’ to obtain some subproblems, each of which also
comes with an (L}, L3, Cy)-schedule. The number of subproblems is at most

[Lo/(L7 = pmax)] < [Lo/(Ly = boL1)]
< Lo/(L} —boLy) + 1

< 77 (1+0(1/L]) + O(L1/Lo))
(4.6) < ﬁ—; (14+0(1/LY)).

We next show a recursive scheme to handle each of these subproblems.

General step. Suppose, in general, we have a subproblem which comes with an
(L%, L2, C;)-schedule, 1 < i < t. We first dispose of some easy cases. If i = ¢, then
L; = O(1); by (4.5), C; = O(1) also. Thus, we can efficiently find a schedule of
length O(1). So we assume i < t — 1. Next, suppose u? > L?/2. Note that the
“Pmax’ and “Ilax” values of the given subproblem are respectively at most L;‘ and
C; - (L}/L?) = O(L}). Thus, if u> > L$/2, then Corollary 4.4 shows that we can
construct a schedule of makespan

lo lo i s Pmax
(4.7) o (rs. Josu_ [logmin{mu, pma}) 1)
loglogu loglogu

So we assume that u? < L3/2.

We now show a scheme that will construct a feasible schedule for the problem if
w > boLiq1; if u < boL;iy1, we will show how to reduce this problem to a number of
subproblems, each of which comes with an (L} ,,L?, |, Cj;1)-schedule.

First suppose u > bygL;y1. We follow our approach for the simple case of the
preprocessing step. Define B = L$/2, £ = L3, {' = u?, and 6 = 1. Since u? < L}/2,
we have B + £' < £ as required by Theorem 4.3. So, if by is sufficiently large, we will
have

(4.8) G(Cil' [(Bu),8) < (L + Ci)~*,

since L? < C; < 2L3 by (4.4) and (4.5). As in the “simple case”, we can get an
(Li+B, ', 0(£"))-schedule, apply ¢'-splitting to it, and solve the resulting subproblems
using Corollary 4.4. The final schedule will have makespan as in (4.7).

Finally, suppose u < bgL;t1. We follow the general idea of the “interesting
case” of the preprocessing step. Define B = L} — L?,,, ¢ = L}, ' = L} ,, and
0 =bo/(3\/Lit1). Once again, since u < byL;y1, we will have (4.8). Thus, as in the
“interesting case”, we construct an (L} + Lf,L?H,CZ-H)—schedule, and apply L;‘H-
splitting to it. As a result, we get some number of subproblems, each of which is
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equipped with an (L} ,,L?_;,Ci1)-schedule; we recurse on these independently. As
in the derivation of (4.6), the number of subproblems is at most

(4.9) [(Li+ L3)/(Lig1 — boLig1)] < LI‘;i S(1+0@1/LE,)).

Let the final set of subproblems we solve be those that come with an (L, L3, C,)-
schedule, for some p. The product of the terms in (4.6) and (4.9) as ¢ runs from 1 to
p—1,is O(LO/L;*)). Thus, by (4.7), the final makespan is

logu Fog(min{mu,pmax}) W )

0 ((Lo/p)L:

loglogu log logu
logu log(min{m, pmax })
= O LO N * ?
loglog u loglogu

as claimed by Theorem 1.3(a).

4.4. Basic ideas from earlier constructivizations of the LLL. This section
is based on the work of [5, 1, 12]. The main result here is Theorem 4.7, which will be
used in Section 4.5 to prove Theorem 4.3.

Given an undirected graph G = (V, E), recall that a set C C V is a dominating
set of G if and only if all vertices in V — C have some neighbour in C'. For any positive
integer ¢, we define G! to be the graph on the same vertex set V, with two vertices
adjacent if and only if they are distinct and there is a path of length at most £ that
connects them in G. We let A(G) denote the maximum degree of the vertices in G.
Also, suppose R is some random process and that each vertex in V represents some
event related to R. We say that G is a dependency graph for R if and only if for each
v € V and any set of vertices S such that no element of S is adjacent to v in G, we
have that the event corresponding to v is independent of any Boolean combination of
the events corresponding to the elements of 5.

In Lemma 4.6 and subsequently, the phrase “connected component” means “maz-
tmal connected subgraph”, as usual.

LEMMA 4.6. Given an undirected graph Gi1 = (V,E) with a dominating set
C, let Gy be the subgraph of G5 that is induced by C. Pick an arbitrary mazimal
independent set I in Ga, and let G3 be the subgraph of G35 induced by I. Suppose
G4 has a connected component with N wvertices. Then Gs has a connected component
with at least N/((A(G1) + 1)(A(G1))3) vertices.

Proof. Let Cy = (U, E') be a connected component of Gi with N vertices.
Then, the vertices in C' N U are connected in (G5, which is seen as follows. Sup-
pose vy, U, Us, ..., U, v is a path in Cy, where vy and v; are in CNU, and uq,...,u;
are all in U — (C NU). Then, since C NU is a dominating set in C, for 1 < i < ¢,
u; must have some neighbour v; € C N U. Hence, there are paths v;, u;, ;41,41
for 1 < i <t so v, and v; are connected in G5. Thus, all of the vertices in C N U
are connected in GGo. Since C' N U is a dominating set in Cy, it is also easy to check
that |[CNU| > N/(A(Cy) +1) > N/(A(G1) + 1). Thus, C N U yields a connected
component C5 in G that has at least N/(A(G1) + 1) vertices.

Since A(C2) < (A(G1))® — 1, one can similarly show that I N (C NU) yields a
connected component C3 in G5 that has at least

cnul _ IcnU]

A(Cy) +1 7 (A(G1))? ~ (A(GY) + D(A(GY))?
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vertices. O

We present a key ingredient of [5, 1, 12]:

THEOREM 4.7. Let a graph G = (V, E) be a dependency graph for a random
process R, with the probability of occurrence of the event represented by any vertex
of G being at most r. Run the process R, and let C C V be the vertices of G that
represent the events (among the elements of V') that occurred during the run. (Thus,
C is a random subset of V with some distribution.) Let G1 be the subgraph of G
induced by CUC", where C' is the set of vertices of G that have at least one neighbour
in C. Then, for any x > 1, the probability of G, having a connected component with
at least 2(A(G) 4+ 1)(A(G))? vertices, is at most |V|A(G) ™" 2use (A(G)lsr)y‘

Proof. Observe that, by construction, C' is a dominating set for G;. Construct Gs,
I, and G3 as in the statement of Lemma 4.6. Note that deterministically, A(Gy) <
A(G). Thus, by Lemma 4.6, we just need to bound the probability of G5 having a
connected component with z or more vertices.

Suppose that a size-y set S of vertices of G forms a connected component in Gs.
Then there is a sub-tree T' of G5 which spans the vertices in S. T can be represented
by a list L which lists all of the vertices that are visited in a depth-first traversal of T'.
Each vertex in T' (except the root) is visited both before its children and after each
child (the root is only visited after each child), so each vertex appears on L once for
each edge adjacent to it in T'. Thus, the length of L is 2(y — 1). If two vertices are
adjacent on L then they are adjacent in G, which implies that the distance between
them in G is at most 9. Thus, given G, the number of possible sets S is at most the
number of possible lists L, which is at most |V| (the number of choices for the first

vertex on L) times (A(G)g)z(yfl) (the number of choices for the rest of L). Thus, the
number of sets S which could possibly correspond to size-y connected components
in G is at most [V|A(G) " A(G)"®.

The definition of I implies that the vertices in G5 form an independent set in G.
Furthermore, given any independent set S of size y in G, Bayes’ theorem and the
definition of dependency graphs show that the probability that all elements of S are
in GG3 is at most r¥. Thus, the probability that G3 has a connected component of
size y is at most |V|A(G)_18(A(G)18r)y. O

4.5. Proof of Theorem 4.3. We now assume the notation of Theorem 4.3 and
prove the theorem. Define the following “bad” events:

!

g(lvk:JI:JQ) = (ng’,/" (Z: k7.717.72) > E : (Cglg,ﬁ(z: (k -B+ 1)+:]17.72) + C(S)),
E'i k,g1) = (Fj2 > g1+ E(4, Kk, j1, J2)).

By the assumption of Theorem 4.3, Pr[£(i, k, j1,J2)] < (max{L,B,C})% for all
(i,k,41,72). Now, for the given instance I, Pypax < L and Iy < C - [L/€] < CL.
Thus, in particular, at most C'L jobs use any given machine M;. So, we have for all
(Z k,jl) that

(4.10) Pr[€' (i, k,j1)] < p = CL(max{L, B,C})~ .

The algorithm processes the jobs in the order Ji,J,.... When it is job J;’s
turn, we give it a random delay from {0,1,..., B — 1}, and check if this makes, for
any pair (i,k), the event £(i, k, 1, j) true. If so, we temporarily set aside J; and all
yet-unprocessed jobs that use machine M;. Let [J; denote the set of jobs which do get
assigned a delay by this process. We shall basically show that, with high probability,
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the problem of assigning delays to the jobs not in J; gets decomposed into a set of
much smaller subproblems. To this end, we first set up some notation in order to
apply Theorem 4.7.

Construct an undirected graph G with the events £'(i, k, 1) as nodes, with an edge
between two distinct nodes (i, k,1) and £'(i', k', 1) if and only if either (P1) ¢ = ¢/,
or (P2) there is some job that uses both the machines M; and M;.. Tt is easy to check
that G is a valid dependency graph for the events £'(i, k,1). The number of vertices
in G is at most m(L + B). Recall that at most C'L jobs use any given machine and
that each such job uses at most L — 1 other machines. Thus, each node can have at
most L + B neighbours of type (P1), and at most CL(L — 1)(L + B) neighbours of
type (P2). So A(G) is at most

L+B+CL(L—-1)(L+B)<CL*L+B)-1.

Run the above random process of randomly scheduling and setting aside (if nec-
essary) some of the jobs. Let C be the set of events £'(i, k, 1) that actually happened.
Let C’ be the set of nodes of G that have at least one neighbour in C, and let G be
the subgraph of G that is induced by C UC'. Thus, by applying Theorem 4.7 with
V| <m(L+ B), A(G) <CL*(L+ B) —1, x = logm and r = p, we see from (4.10)
that

Pr[G; has a connected component with at least (CL?(L + B))* logm nodes]
(4.11) <1/2,

if c3 is appropriately large.

We repeat the above process until all connected components of G; have at most
(CL*(L + B))*logm nodes. By (4.11), we expect to run the above process at most
twice.

What have we achieved? Let us first give all the jobs in J; their assigned delays,
and remove them from consideration. The key observation is as follows. Fix any
remaining job .J;. Then, for no two machines M; and M; that are both used by J;,
can we have two nodes £'(i, k,1) and £'(i', k', 1) in different connected components of
G1. This is because £'(i, k, 1) and £'(i', k', 1) are neighbours in G. Thus, the problem
in each connected component of G; can be solved completely independently of the
other connected components.

So all connected components of G; have at most (C'L?(L + B))*logm nodes. To
further reduce this component size, we repeat the above process on each connected
component C'Cy of Gy separately, as follows. Fix any such CCj. Define f; (i) to be the
least index j such that J; ¢ J1 and such that J; uses M;. (If all jobs that use M; are
in Ji, we define fi(i) = n+ 1 for convenience.) Note that all jobs J; that use M; and
have j > f1(i), lie outside the set J1. We process the jobs lying outside [J; in order
as before. When it is job J;’s turn, we give it a random delay from {0,1,...,B — 1},
and check if this makes, for any pair (i, k), the event £(i,k, f1(4),j) true. (This is
mostly the same as before, except that we have “f;(i)” in place of “1” now.) If so, we
temporarily set aside J; and all yet-unprocessed jobs lying outside [J;, that use M;.

We proceed similarly as above. Let J5 denote the set of jobs which get assigned a
delay by this process. We now show that the problem of assigning delays to the jobs
not in J1 U J2 gets decomposed into even smaller subproblems, with high probability.
In place of the bad events {€'(i, k,1)}, the bad events now are {£'(i, k, f1(1))}. We
can once again invoke Theorem 4.7; we take |V| < (CL*(L + B))*logm, A(G) <
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CL*(L+ B) — 1, z = loglogm and r = p. As before, if ¢3 is large enough, we expect
to repeat this process at most twice before ensuring that all resulting “connected
components” have at most (CL?(L + B))*loglogm nodes.

We now consider any connected component CC| remaining after the above two
passes. (Once again, all these components can be handled independently.) Define
f2(%) to be the least index j such that J; € (J1 U J2) and such that J; uses M;. We
now show how to give delays to all jobs lying outside (J; U J»), in a manner that
avoids all the events £'(i, k, f2(i)). There are two cases:

Case I: loglogm < L+ B + C. In this case, the number of “nodes” (events
E'(i, k, f2(i))) in CC} is poly(L,B,C). Thus, if we start with a random B-delayed
schedule for the jobs associated with C'C{, the probability that at least one “bad”
event associated with CCJ (i.e., at least one node of C'C}) happens is at most 1/2, if
es is large enough. So we expect to run this process on CC} at most twice.

Case II: loglogm > L+ B+C. The number of nodes in C'C{ is O(poly(loglogm)) in
this case. So the number of machines associated with C'C{ is also O(poly(loglogm)),
and hence the number of jobs associated with CCj is at most O(L - poly(loglogm)),
i.e., O(poly(loglogm)).

We recall the Lovész Local Lemma (LLL):

LeMMA 4.8. ([7]) Let Ei, Ea, ..., E; be any events with Pr[E;] < q for all i. If
each E; is mutually independent of all but at most d of the other events E; and if
eq(d+1) < 1, then Pr[\'_, Ei] > 0.

As seen above, any event £’(i, k, f2(i)) depends on at most CL?(L + B) — 1 other
such events. Also, Pr[€'(i, k, f2(¢))] < p for all 4,k. Thus, if ¢z is sufficiently large,
the LLL shows that there exists a way of giving a delay in {0,1,...,B — 1} to each
job associated with CCj, in order to avoid all the events £'(i, k, f2(i)) associated
with CCJ. But here, there are at most O(poly(loglogm)) jobs, and each has only
B < loglogm possible initial delays! Thus, exhaustive search can be applied to find
a “good” B-delayed schedule that we know to exist: the time needed for CCy is at
most

(loglog m)O(poly(log logm)) _ po(1)

Let 8" be the final delayed schedule produced. Consider any interval (k,k + £').
We have

Con i, F) < 5 (Clglis (k= B+ 1)1 A1) ~ 1)+ Co) +
(Ol k= B ) £i(0). £oli) — 1) + C) +
b (Chali. (k= B+ 1)* i), m) + CB)
= % - (C (i, (k = B+1)",1,n) + 3C9)
ZI
< &+ (C+309),

as required.
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It is also easy to check via linearity of expectation that the expected running time
of the algorithm is poly(m, L, ¢, C). This concludes the proof of Theorem 4.3.
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A (My)

Job 1:

B (M) C (Ms) D (Ms)
Job 2:

E (Ms) F (My)
Job 3:
G (My) |H (My) | I (M>)

Job 4:

J (M2) K (M>)
Job 5:

Fic. 3.1. One frame of S, where pmax = 8, A-K are the labels of operations, and Mi—My are
the machines.

Fi1a. 3.2. Assigning operations to nodes of T. For example, if u denotes the leftmost node on
the second-highest level, then Si(u) = {B}, Ss5(u) = {J}, and S¢(u) = 0 for every other £.
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Job 1:

Job 2:

Job 3:

Job 4:

Job 5:

U4,12

Fic. 3.3. Calculating p for each node.

u1,0

u13725

u5,12 u7,14 u8,14 U11,23 U12,24 U14,27 U15,27

F1c. 3.4. Calculating f for each node.

123 456 7 8 910111213141516 1718 19 20 21 22 23 24 25 26 27

A
My

B C D
My M2 M3
E F
Ms My
G H|I
My M1|Ms2
J K
M2 M2

Fic. 3.5. The schedule S'.
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Job 1: A

Job 2: B ‘

Job 3: ¢ D
Jobal B | P

Job 5: G
Job 6: H
Job 7: !
Job 6:

Fi1c. 3.6. One frame of S, focussing only on operations for a single machine.

u A B H, D

us

Fic. 3.7. Assigning a dummy operation () to the root of T".

U

us/E, A u B Ug

F1c. 3.8. Redistributing the operations originally allocated to uy.

U

U9 Us G
U3 Uq U ur
E,A,C,I B,J,0  FH D,
F1c. 3.9. Redistributing the operations originally allocated to uz.
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TI

leaves of T

F1G. 3.10. The case in which w is a leaf.

Tl

v

\ k
w 1T

leaves of T

F1G. 3.11. The case in which w is not a leaf.

26



