London Mathematical Society ISSN 1461-1570

COUNTING UNLABELLED SUBTREES OF A TREE
IS#P-COMPLETE

LESLIE ANN GOLDBERG AND MARK JERRUM

Abstract

The problem of counting unlabelled subtrees of a tree Gu&h;
trees that are distinct up to isomorphism) is #P-complete feence
equivalent in computational difficulty to evaluating therpanent
of a 0,1-matrix.

1. Introduction

Valiant's complexity class #P (se&1]) stands in relation to counting problems as NP
does to decision problems. A functidn: * — N is in #P if there is a hondeterministic
polynomial-time Turing machin®l such that the number of accepting computations!of
on inputxis f(x), for all x € Z*. A counting problem, i.e., a functioh: £* — N, is said
to be #Phard if every function in #P is polynomial-time Turing reducikite f; it is com-
plete for #P if, in addition,f € #P. A #P-complete problem is equivalent in computational
difficulty to such problems as counting the number of saitigfyassignments to a Boolean
formula, or evaluating the permanent of a 0,1-matrix, wtdodl widely believed to be in-
tractable. For background information on #P and its comepless class, refer to one of the
standard texts, e.g.3[8].

The main result of the paper—advertised in the abstract,saatdd more formally
below—is interesting on two counts. First, it provides aerakample of a natural ques-
tion about trees which is unlikely to be polynomial-timewsdile. (Two other examples are
determining a vertex ordering of minimum bandwidih 4], or determining the “harmo-
nious chromatic number?].) Second, it is, as far as we are aware, the first intragtabil
result concerning the counting of unlabelled structures.

Some definitions. Byooted tree (T,r) we simply mean a tre€ with a distinguished
vertexr, theroot. An embedding of a treeT’ in a tre€T is a injective map from the vertex
set of T’ to the vertex set of such that(1(u),1(v)) is an edge off whenever(u,v) is a
edge ofT’. Sometimed’ andT will be rooted, in which case we may insist thanaps
the rootr’ of T’ to the rootr of T. We now define a sequence of problems leading to one
of interest; we do not claim that both the intermediate peotd are particularly natural.

Name. #BIPARTITEMATCHINGS.
Instance. A bipartite graphG with n vertices in each of its two vertex sets.
Output. The number of matchings of all sizes@

Name. #COMMONROOTEDSUBTREES
Instance. Two rooted treeg,T,r1) and(Ty,r2).
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Counting unlabelled subtrees

Output. The number of distinct (up to isomorphism) rooted tré€g) such that(T,r)
embeds inTy,r1) and(T, r2) with r mapped ta; andr,, respectively.

Name. #ROOTEDSUBTREES

Instance. A rooted tree(T,r).

Output. The number of distinct (up to isomorphism) rooted tréE'sr’) such tha{T’,r’)
embeds inT,r) with r’ mapped ta.

Name. #SUBTREES
Instance. AtreeT.
Output. The number of distinct (up to isomorphism) subtree¥ of

We will use each of the problem names in an obvious way to @eadtnction from
instances to outputs: thus #RTEDSUBTREES T, r) denotes the number of distinct rooted
subtrees of the rooted tré€, r). Our main result is the following.

Theorem 1. #SUBTREESis#P-complete.

Proof. The #P-hardness of #BARTITEMATCHINGS follows from Valiant's paperI1]. In
particular, Valiant shows that the problemHERFECTMATCHINGS is #P-complete.Ni-
PERFECTATCHINGS is the same as #BARTITEMATCHINGS except that the size of the
two vertex sets may differMPERFECTMATCHINGS may be reduced to #BARTITEM-
ATCHINGS by adding vertices to the smaller vertex set. Thus, #P-lemslof #89BTREES
follows from Lemmas 2—4 and from the transitivity of polyniattime Turing reducibil-
ity. We will now show that #8BTREESIs in #P. Suppose that is a tree with vertex
setVh = {Vo,...,Vn—1}. We will order the vertices i, so thatv; < v; iff i < j. For every
(labelled) subtred’ of T, let V(T') denote the vertex set df'. We will say that sub-
treeT"” islarger than subtred’ if and only if there is a vertey; € Vj, such that; € V(T"),
vi ZV(T') and

V(TN {Vig1, -V} =V(T") N {Vig1, ..., Vn}-

Let T” be a subtree of . EitherT” is the smallest subtree @fin its isomorphism class or
there is a vertex; € V(T") such that the sub-foreBt of T induced by vertex set

Vi eV | Vi <V} U{vi eV(T") |vi > v}

contains a tree isomorphic f6”. Thus, one can determine whethEf is the smallest
subtree ofT in its isomorphism class by solvirsgbgraph isomor phismwith inputsF, and
T" for all v, € V(T"). SinceF; is a forestand” is a tree, this can be done in polynomial
time [3] using the method of Edmonds and Matula. It is now simple tecdbe the #P
computation: With inpuf, each branch picks a subtréé of T and rejects unlesg” is
the smallest subtree @fin its isomorphism class.

O

2. Thereductions

Denote by<t the relation “is polynomial-time Turing reducible to.”

Lemma 2.

#BIPARTITEMATCHINGS <1 #COMMONROOTEDSUBTREES
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Figure 1: The skeleton of treds and Ty, illustrating the presence of edga, v;j) in G.

Proof. Let G be an instance of #BARTITEMATCHINGS with vertex sets{uo,...,Un_1}
and{vo,...,vn_1}. FromG, we construct two rooted tregd;,r1) and(Tz,r2), each based
on a fixed skeleton. The skeletonTifhas vertex set

{xj:0<i<n—1and0< j <M +i+1}u{ri},
and edge set
{(%,j,%,j+1):0<i<n—Tland 0< j < M +i}tU{(r;,%0) :0<i<n—1}

Informally, the skeleton of; consists oh paths of different lengths emanating from the
rootry, as illustrated in Figure 1. Thesepaths correspond to threvertices{u;} of G.

The skeleton ofl, is similar to the skeleton of;, except the paths now have equal
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length. It has vertex set
{yij:0<i<n—1and0< j<n?+n}u{ra},
and edge set
{05:%5+2) 10 <n—1and 0< j <n*+n—1}U{(r2 ¥i0) :0<i < n—-1}.

Then paths emanating from correspond to the to thevertices{v;} of G.

The treesT; and T, themselves are built by adding to the respective skeletertain
edges encoding the gragh Specifically, for each eddes, v;) of G, we add an edge from
a new vertex to vertex;inj of Ty and add an edge from a new vertex to veryg |
of To.

Let 7* denote the set of all finite (unlabelled) rooted tré€sr) that have leaves at
all distances in the range? + 2,n? + n+ 1] from the rootr. For any rooted tre¢T,r),
let 7(T,r) denote the set of all (unlabelled) rooted subtreegTof). Thus, the quantity
#RoOTEDSUBTREEST, ) is just the size off (T,r). We first observe that there is a bijec-
tion between the set of matchings (of all sizesGiand the sef (T1,r1) VT (To,r2) VT,
and then conclude the proof by showing how to compute thes$iZ& Ty, r1) N T (Tz,r2) N
T* using an oracle for #GMMONROOTEDSUBTREES

Consider some tre€l,r) € T(T1,r1) NI (T2,r2) NT*. From the definition of7* we
see thafl must contain the entire skeleton®f. Let us now see which other edgesTaf
can be presentim. That is, we will now consider the “pendant edges” which hafigf
the skeleton oT;. Suppose that for somendj in {0,...,n— 1} there is a pendant edge
at distancen + j + 1 from the root ofT. Then the edgéu;,v;) must be present i&(G).
Also, for anyj’ € {0,...,n—1} which is not equal tg, T cannot contain a pendant edge
at distancein+ j’ + 1 from the root. (To see this, note that by the constructioof
edge€ would be a descendant &fo in T1. The presence afin T ensures that; o and
yj0 are associated with the same vertexTobut € is not a descendant of o in T>.)
Similarly, for anyi’ € {0,...,n— 1} which is not equal ta, T cannot contain a pendant
edge€ at distancdé’n+ j + 1 from the root. ThusT contains at mosh pendant edges
and these correspond to a matchingg(G). So, every rooted tre€T,r) € 7 (T1,r1) N
T (T, r2) NT* may be interpreted as a matching@ and vice versa. This is the sought
for bijection between the set of matchingsGrand the seZ (Ti,r1) N7 (T2, r2)NZ*. To
conclude, we just need to show how compute the size of ther Is¢tt using an oracle for
#COMMONROOTEDSUBTREES

LetL be the set of alleavesin (Ty,r1) whose distances from the ragtare in the range
"> +2,n*+n+1]. LetU be the set of allertices in (Tz,r2) whose distances from
are in the rangén? + 2,n? + n+ 1]. For eachj € {0,...,n}, let T/ be the tree formed
from (Ty,r1) by adorning every vertex i with a tuft of n+ j edges and leT; be the
tree formed from(Ty,r2) by adorning every vertex i with a tuft ofn+ j edges. By the
phrase “adorning a vertexwith a tuft oft edges” we mean the following: credtmew
vertices and add an edge from each of these new verticesFor k € {0,...,n}, let a
be the number of rooted treesd(T?2,r1) N7 (T2, r2) that havek vertices of degrea+ 1.
Clearly,

an=|T(Ti,r)NT(To,r2) T

So we want to show how to compudg using an oracle for #GMMONROOTEDSUB-
TREES
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Counting unlabelled subtrees

We claim (and shall justify presently) that
. . n
| T(T,r) N T (T} r2)| = 2 i+ Dk, (1)
k=

Thus, we can use an oracle for #8@MONROOTEDSUBTREESto evaluate the left-hand
side of 1 atj = 0,...n; then we can computa, by Lagrange interpolatioh.
It remains to prove equation (1). We define a projection fiamct

T (T, ) NT(T)ra) » T(T,r) N T (T, 12)

as follows. For any rooted tred,r) in the domain(T’,r) = 1(T,r) is the maximunt-
rooted subtree ofT,r) that has no vertex of degree greater timan1. To see thal' is
uniquely defined, consider an embeddingDfr) into (TlJ ,r1). The only vertices of degree
greater tham+ 1 are those which are mapped to tufts. THTS,r) is obtained fron(T,r)
by pruning tufts with more than pendant edges down to exactiypendant edges. Note
also that the resulting tre@’,r) can be embedded in bot?,r1) and (T2,r2), sois
indeed well defined.

How large istt(T’,r)? To every tuft with exactlyr pendant edges we may add any
number of pendant edges, from OjtcAll the tufts are distinguishable, because they are all
at distinct distances from the roatThus all these possible augmentations lead to distinct
trees, andt 1(T',r) = (j + 1), wherek is the number of vertices ifT’,r) of degreen+ 1.
Thus, each of they rooted trees irZ (T2, r1) N 7 (T2, r2) with k vertices of degrea+ 1

are mapped byr 1 to (j + 1)k trees in7 (T,r1) N T (T},r2). The lemmafollows. O

Lemma 3.

#COMMONROOTEDSUBTREESE T #ROOTEDSUBTREES

Proof. Suppose thafTi,r1) and (T, r2) constitute an instance of #3MONROOTED-
SUBTREES Let (T,r) be the rooted tree formed by takiflg and T, and adding a new
root, r, and edgesr.r1) and(r,r2). For notational convenience, introduce the following
quantities:

N; = #ROOTEDSUBTREESTy,r1),
N2 = #ROOTEDSUBTREES Ty, 2),

N = #ROOTEDSUBTREELT,r), and

C = #CoOMMONROOTEDSUBTREES(T1,r1),(T2,r2)).

We start by observing that
C
N=1+N1+No—C+ NNz — (2)

To see this, note thdf,r) has
¢ one distinct subtree in which the degree @& 0, and
e Ni + Ny — C distinct subtrees in which the degreerd$ 1, and
o N1\, — (§) distinct subtrees in which the degreerd$ 2.

1See Valiant 11] for details of this process, particularly the claim thaeipolation is a polynomial-time opera-
tion.
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Thus,C(C+ 1) = 2Z, whereZ denotes
1+ Ng+No+ NN —N.

To computeC, first calculateZ using an oracle for #20TEDSUBTREES Then, observe
that

C?<2Z<(C+1%

soC is theinteger square root of 2Z, which can be computed B®(logZ) time. Note that
logZ is polynomially-bounded in the size of the input, since,drampleN; < 2™, where
ny is the number of vertices if. O

Lemma4.
#ROOTEDSUBTREESKT #SUBTREES

Proof. For anyi, an ‘i-tuft” is a tree consisting of one (centre) vertex with degrandi
(outer) vertices, each of which has degree 1.

Suppose thaiT,r) is an instance of #80TEDSUBTREES Let A denote the maximum
degree of a vertex if. Let T’ be the tree formed frori by taking a newA + 3)-tuft,
and identifying one of the outer vertices withLet T” be the tree formed front by
taking a new(A + 2)-tuft, and identifying one of the outer vertices withLet N’ denote
#SUBTREEYT’) and letN” denote #8BTREE]T"). Then #ROOTEDSUBTREEST, ) is
equal toN’ — N", so it can be computed using an oracle foUBSREES O

3. Some consequences

Following Valiant [L1], we say that a functioffi : 2* — Nis in FP if it can be computed
by a deterministic polynomial-time Turing machine. We shgttit is in FF® for a prob-
lem g if it can be computed by a deterministic polynomial-timeifigrmachine which is
equipped with an oracle fag. Finally, we say that it is in Ffofor a complexity clas#\ if
there is somg € A such thatf € FP.

Let #CONNECTEDSUBGRAPHSbe the problem of counting unlabelled connected sub-
graphs of a graph. Formally, let it be defined as follows.

Name. #CONNECTEDSUBGRAPHS
Instance. A graphG.
Output. The number of distinct (up to isomorphism) connected sytitgsafG.

Corollary 5. #CONNECTEDSUBGRAPHSis complete for FP*,

Proof. #CONNECTEDSUBGRAPHSis FP*P-hard by Theorem 1. We will show that #®-
NECTEDSUBGRAPHSIs in the class FE2"F which will be defined shortly. The result will
then follow by Toda’s theoren®].

We start by defining the relevant complexity classes. A fianct : 3 — N is in the
class span-F7] if there is a polynomial-time nondeterministic Turing nhaeM (with an
output device) such that the numberdifferent accepting outputs d¥l on inputxis f(x),
forall x € >*.

A function f : * — N is in #NP if there is a polynomial-time nondeterministic ifigr
machineM and an oraclé\ € NP such that the number of accepting computationgdf
on inputxis f(x), forall x € Z*.
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The classes #P, span-P, and #NP are reldiduy{
#P C span-PC #NP.
Thus,
FP*P C FPPPan-PC ppiNP.

But FPNP C FPPPH where #PH is the class of functions that count the numberasating
computations of polynomial-time nondeterministic Turingchines with oracles from PH.
Furthermore, Toda and Watanalé][show #PHC FP*". Thus,

FP*P = ppspanp

(See also Section8 of Welsh’s book 12].)

We now complete the proof by showing that #NECTEDSUBGRAPHSIs in FPPan-P
Let N(G,k) denotek! times the number of distinct (up to isomorphism) connedliedk
subgraphs o6. Since

n
1
#CONNECTEDSUBGRAPHYG) = z EN(G,k),
k=1"

wheren is the number of vertices @3, it suffices to show that computing(G,k) is in
span-P. Each branch of the computation treeNf@®, k) chooses

e asizek connected subgrapt of G,

¢ abijectiono from the vertices oH to the set{v1,..., v}, and

e apermutatiormofvy, ..., w.
LetH’ be the graph formed from by relabelling each vertexof H with the labelo(v).
If Ttis an automorphism dfl’ then (H’, 1) is output. Otherwise, the branch rejects. The
result now follows from Burnside’s Lemma, which impliestfar any given isomorphism

class ofk-vertex graphs, the number of graphs in the isomorphisns ¢iaes the number
of automorphisms of any member of the class is equkl.t(-or example, se€q].) O

Let #GRAPHSUBTREES be the problem of counting unlabelled subtrees of a graph.
Formally, let it be defined as follows.

Name. #GRAPHSUBTREES
Instance. A graphG.
Output. The number of distinct (up to isomorphism) subtree&of

Corollary 6. #GRAPHSUBTREESis complete for FPP,

Proof. This is the same as the proof of Corollary 5, except that ttae-4p computation
rejects any subgragt which is not a tree. A more direct proof could be obtained biggs
a polynomial-time canonical labelling algorithm for treesch as the one by Hopcroft and
Tarjan [g]. O
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