
1

PTAS for Sparse General-Valued CSPs

BALÁZS F. MEZEI
MARCIN WROCHNA, University of Warsaw, Poland

STANISLAV ŽIVNÝ, University of Oxford, United Kingdom

We study polynomial-time approximation schemes (PTASes) for constraint satisfaction problems (CSPs) such

as Maximum Independent Set or Minimum Vertex Cover on sparse graph classes.

Baker’s approach gives a PTAS on planar graphs, excluded-minor classes, and beyond. For Max-CSPs,

and even more generally, maximisation finite-valued CSPs (where constraints are arbitrary non-negative

functions), Romero, Wrochna, and Živný [SODA’21] showed that the Sherali-Adams LP relaxation gives a

simple PTAS for all fractionally-treewidth-fragile classes, which is the most general “sparsity” condition for

which a PTAS is known. We extend these results to general-valued CSPs, which include “crisp” (or “strict”)

constraints that have to be satisfied by every feasible assignment. The only condition on the crisp constraints is

that their domain contains an element which is at least as feasible as all the others (but possibly less valuable).

For minimisation general-valued CSPs with crisp constraints, we present a PTAS for all Baker graph classes

— a definition by Dvořák [SODA’20] which encompasses all classes where Baker’s technique is known to

work, except for fractionally-treewidth-fragile classes. While this is standard for problems satisfying a certain

monotonicity condition on crisp constraints, we show this can be relaxed to diagonalisability — a property of

relational structures connected to logics, statistical physics, and random CSPs.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms.

Additional Key Words and Phrases: constraint satisfaction, Baker classes, sparsity, diagonalisability

ACM Reference Format:
Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný. 2022. PTAS for Sparse General-Valued CSPs. ACM
Trans. Algor. 1, 1, Article 1 (January 2022), 31 pages.

1 INTRODUCTION
Min-Ones and Max-Ones, studied by Khanna and Motwani (under the names of TMIN and TMAX,

respectively) [31] and by Khanna, Sudan, Trevisan, and Williamson [32], are Boolean CSPs in which

one seeks a feasible solution (a 0–1 assignment satisfying all constraints) minimising/maximising

the number of variables assigned the label 1. Classical examples are the Minimum Vertex Cover and

the Maximum Independent Set problem, respectively. A natural generalisation to larger alphabets

is the problem in which one seeks a solution to a CSP instance while minimising/maximising a

sum of unary functions. With injective unary functions, such problems have been studied under

the name of Strict-CSP by plumar, Manokaran, Tulsiani, and Vishnoi [36], and Min/Max-Solution

by Jonsson, Kuivinen, and Nordh [29]. With arbitrary unary functions, such problems have been

studied under the name of Min-Cost-Hom by Gutin, Hell, Rafiey, and Yeo [23], Takhanov [46],

and others [24, 25, 40]. In this paper we consider the still more general setting of general-valued

Authors’ addresses: Balázs F. Mezei; Marcin Wrochna, m.wrochna@mimuw.edu.pl, University of Warsaw, Warsaw, Poland;

Stanislav Živný, standa.zivny@cs.ox.ac.uk, University of Oxford, Oxford, United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1549-6325/2022/1-ART1 $15.00

https://doi.org/

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/

1:2 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

CSPs, where constraints are functions which give values to every possible assignment on a tuple of

variables; we allow ∞ or −∞ values to express crisp (also known as strict) constraints, which have

to be satisfied by every feasible (finite-valued) assignment. While a lot of research is devoted to

exact algorithms or optimal approximation ratios in APX-hard cases (see [27, 30, 37] for surveys),

we seek the most general conditions that allow to obtain a polynomial-time approximation scheme

(PTAS).

Baker [1] gave an elegant method (sometimes known as the shifting or layering technique)
for constructing polynomial-time approximation schemes (PTASes) which applies to many such

problems, with the condition that the input instance’s graph (the Gaifman graph) is “sparse”. This

was initially presented for planar graphs, but it is known that similar structural properties are

exhibited by all proper minor-closed graph classes [11, 12, 20] and beyond: e.g. graphs embeddable

in a fixed surface with few intersections per edge [19, 38], or sparse unit ball intersection graphs in

few dimensions [26] (but not e.g. 3-regular expanders: bounded degree is not sufficient to get a

PTAS even for Independent Set [2]). Dvořák [15] defined fractionally-treewidth-fragile classes —
a natural generalisation of earlier sparsity conditions — which encompasses all these examples.

A class of graphs is fractionally-treewidth-fragile if one can remove vertices in a randomised way

so that each vertex is removed with arbitrarily small probability 𝜀, but the treewidth after removal

is always bounded, the bound depending on 𝜀 only. He showed that if this notion of sparsity can be

efficiently certified in a class of graphs, then this suffices to guarantee a PTAS, at least for a few

problems such as Weighted Maximum Independent Set. On the other hand it is not known whether

this suffices for Minimum Vertex Cover, for example.

To remedy this, Dvořák [16] later defined Baker classes and proved that (an effective version of)

this condition suffices to provide a PTAS to all monotone optimisation problems expressible in

first-order logic (including of course Vertex Cover). Very roughly, a class of graphs is Baker if one
can reduce each graph in it to the empty graph by a bounded number of the following steps: either

remove a single vertex, or select a breadth-first-search layering and recurse into all subgraphs that

can be induced by a few consecutive layers. Dvořák proved that the family of Baker classes still

includes all the examples discussed above; on the other hand, it is strictly included in the family

of fractionally-treewidth-fragile classes (and hence less general) [14]. It is worth mentioning that

proper minor-closed graph classes can be shown to be Baker (and fractionally-treewidth-fragile)

relatively easily, without using the Graph Minor Structure theorem, in contrast to the earlier, less

general definitions (see [16] for details).

In order to provide a PTAS for a class of general-valued CSPs, a sparsity condition is not enough:
we also need to restrict what types of constraints can be used in an instance. Otherwise, even if the

values to be optimised are trivial, either 0 or infinity, one could use the crisp constraints to express

3-Colouring, which is NP-hard even on planar graphs of bounded degree [10]. In fact, as long as all

crisp constraints are available, for any possible restriction on Gaifman graphs, either the restriction

implies bounded treewidth, making the problem exactly solvable, or it is hard to decide whether

the optimum is zero or infinite, by a result of Grohe, Schwentick, and Segoufin [22]. We will hence

require a condition which ensures that one can easily decide whether a feasible solution (of finite

value) exists. This usually takes the form of a monotonicity condition.

On the other hand, some sparsity condition is also necessary: on general Gaifman graphs, there is

no restriction of constraint types that would result in a general-valued CSP that admits a PTAS but

is not solvable exactly in polynomial time.
1
In this sense our work follows the line of “uniform”

1
This follows from the NP-hardness result of Kozik and Ochremiak [35], which actually shows APX-hardness; for earlier,

explicit APX-hardness results for CSPs see, e.g., [28, 29]. However, we remark non-trivial PTAS examples are known for

“surjective” maximisation finite-valued CSPs [18].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:3

or “hybrid” CSPs, which include restrictions on both the input’s Gaifman graph (left-hand side
restrictions) and on the types of constraints (right-hand side restrictions); see [9] for a survey.

However, unlike that line of work, we look for PTASes instead of exact solvability, which also lets

us go well beyond planar graphs and beyond very specialised algebraic algorithms.

1.1 Related work
The exact solvability of general-valued CSPs has been characterised for left-hand side restric-

tions [8] (tractable cases are precisely classes that have bounded treewidth, up to a certain notion

of homomorphic equivalence) and right-hand side restrictions [34] (tractable cases are precisely

delineated by certain algebraic properties); both results include the case where infinite values are

allowed.

As discussed above, there are no PTASes for general-valued CSPs with only left-hand side or

only right-hand side restrictions, beyond exactly solvable cases. In fact Khanna et al. [32], in their

work on Min-Ones and Max-Ones with right-hand side restriction, remark that “Our framework

lacks such phenomena as PTAS” and discuss left-hand side restrictions as an interesting avenue for

future work for that reason. Similarly [29] and [30] ask in the context of right-hand side restricted

Min-Solution and Max-Solution problems: “Under which restrictions on variable scopes does Max

Sol admit a PTAS?”.

Very recently, PTASes for left-hand side restricted Max-CSP without crisp constraints, such as

Max-Cut, have been studied by Romero, Wrochna, and Živný [44]. More generally, they consider so-

called finite-valued CSPs, where the only right-hand side restriction is having finite, non-negative

values. They showed a PTAS is possible for every fractionally-treewidth-fragile class of Gaifman

graphs. In fact the algorithm is simply the Sherali-Adams linear programming relaxation (with

a growing number of levels giving a better and better approximation), which is oblivious to the

graph structure and does not require it to be efficiently certified in any way.

As for constant-factor approximations, Raghavendra’s celebrated result gave the best approxima-

tion ratio, assuming the Unique Games Conjecture of Khot [33], for all right-hand side restricted

Max-CSPs (and also finite-valued CSPs) [41]. Analogous results for monotone Strict-CSPs were

obtained by Kumar et al. [36]. Constant-factor approximation algorithms have been established

for right-hand side restricted Min-Cost-Hom on special graphs by Hell, Mastrolilli, Nevisi, and

Rafiey [24], and for all graphs and some digraphs by Rafiey, Rafiey, and Santos [40].

1.2 Our results
As in most research on constraint satisfaction, our main motivation is to understand the mathe-

matical structure that governs efficient computation and, if at all possible, to obtain complexity

classifications of large fragments of CSPs. In this paper, the goal was to push the tractability frontier

of general-valued CSPs that admit polynomial-time approximation schemes. In particular, we

try to understand what right-hand side restrictions make Baker’s technique possible, tentatively

answering the aforementioned questions from [29, 30, 32]. We show that the most general results

known for Vertex Cover and Independent Set (PTASes on all Baker or fractionally-treewidth-fragile

classes, respectively) can be extended to any to general-valued CSPs with a certain monotonicity

restriction, and even further.

To clearly separate left-hand side and right-hand side restriction, it is convenient to phrase a

general-valued CSP (VCSP) as the problem of optimising the value of a function between two

valued structures. Precise definitions are given in Section 2. Briefly, a valued structure A consists

of a (finite) domain 𝐴 and a collection of functions 𝑓 A : 𝐴𝑛 → Q ∪ {±∞}, indexed by symbols

𝑓 belonging to a set of symbols 𝜎 called a signature. For two (finite) structures A,C, the value
of an assignment ℎ : 𝐴 → 𝐶 is an expression of the form

∑
𝑓 A (x) 𝑓 C (ℎ(x)). We will be seeking

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

to find either the minimum or maximum value over all assignments, denoted minval(A,C) and
maxval(A,C) respectively. Feasible assignments are those of finite value. The reader should think

of the left-hand side structure A as of a set of variables 𝐴 together with weighted constraint scopes:

for x ∈ 𝐴𝑛
, 𝑓 A (x) = 𝑤 ≠ 0 means that the instance applies the constraint “𝑓 ” to variables in x with

weight𝑤 . The right-hand side structure C encodes the alphabet 𝐶 (to which an assignment ℎ maps

each variable) and the collection of available constraints, which could be arbitraryQ∪{±∞}-valued
cost functions in general. An instance of the VCSP is a pair (A,C); its Gaifman graph, denoted

by G(A), is a graph whose vertex set is the domain 𝐴 with edges between two vertices that occur

together in a constraint of non-zero weight.

Minimum Solution
For minimisation, we first consider (Q≥0 ∪ {∞})-valued right-hand side structures C, in which the

sets of zero-valued tuples and finite-valued tuples are anti-monotone, in the following sense. There

is a total order ≤⊤ on𝐶 , and for all tuples x, y ∈ 𝐶𝑛
with x ≤⊤ y (coordinate-wise) we have that for

all non-unary function symbols 𝑓 of C:

• 𝑓 C (x) < ∞ implies 𝑓 C (y) < ∞, and

• 𝑓 C (x) = 0 implies 𝑓 C (y) = 0.

Intuitively, larger tuples are more feasible. We call valued structures C satisfying this condition

Min-Sol structures. We define Min-SolG to be the general-valued CSP restricted to instances (A,C)
where A is a Q≥0-valued structured with G(A) ∈ G and C is a Min-Sol structure.

For example, Weighted Minimum Vertex Cover is equivalent to the Min-Sol case where C
is the structure with domain {0, 1} and 0 ≤ 1 and with a 2-ary cost function 𝑓 C (0, 0) = ∞,

𝑓 C (1, 0) = 𝑓 C (0, 1) = 𝑓 C (1, 1) = 0, and a unary cost function 𝑢C (0) = 0, 𝑢C (1) = 1.

We show that Min-SolG admits a PTAS for all graph classes G that are efficiently Baker. (Dvořák’s

definition is somewhat involved but we give an exposition in Section 4). As discussed above, this

captures essentially all graph classes where a version of Baker’s technique is known to apply

(including excluded-minor classes and more), except for fractionally-treewidth-fragile classes. We

remark that already the very special case of Minimum Vertex Cover is not known to admit a PTAS

on fractionally-treewidth-fragile classes.

Simultaneously, our results are less restrictive on the right-hand side, as unlike in earlier work

such as the framework of Strict-CSP of [36], we allow arbitrary values strictly between 0 and∞
(not only on unary constraints). Once we realise this is possible, however, the algorithm turns out

to be a rather standard application of Baker’s technique: the only difference is that we increase

the number of layers to account for the maximum ratio between finite, positive values (which is a

constant depending on values of C only).

The main novelty in our work is establishing the existence of a PTAS under a weaker assumption

on the right-hand side structure C – we only require that C should be a diagonalisable structure.

(As we will show in Section 3.5, all Min-Sol structures are diagonalisable and thus our result

establishes a PTAS for Min-Sol structures as a special case.) Diagonalisability is a notion derived

from the work of Brightwell and Winkler [6] in the case of graphs and Briceño, Bulatov, Dalmau,

and Larose [5] in the case of relational structures (which are more general than graphs). The

precise definition of diagonalisability is technical and can be found in Section 3.1. For relational

structures, one characterisation is that a structureC is diagonalisable if and only if the two projection
homomorphisms 𝜋1, 𝜋2 : C×C→ C (defined as 𝜋𝑖 (𝑥1, 𝑥2) = 𝑥𝑖) are connected by some sequence of

homomorphisms𝜓 : C × C→ C such that consecutive homomorphisms in the sequence differ at

only one vertex, and all the homomorphisms in the sequence are idempotent (meaning𝜓 (𝑥, 𝑥) = 𝑥).
This turns out to be equivalent to saying that for all structuresA, the set of all homomorphisms from

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:5

A to C is connected in a similar sense. A few other characterisations connect diagonalisability to

statistical physics via “mixing” properties. Diagonalisability is also equivalent to finite duality (the

existence of finitely many obstructions to having a homomorphism into C), a notion important to

the study of CSPs via logic [7]. For these and many other equivalent definitions of diagonalisability,

cf. [5, Corollary 6.3 and Theorem 3.6] with 𝐽 = 𝑉 (𝐻).
Our main result for minimisation (proved in Section 4) is an approximation scheme for instances

(A,C) where A comes from a Baker class and C is diagonalisable. One should think of the functions

𝑓1 and 𝑓2 as polynomials depending on the size of the graph G(A).

Theorem 1.1. Let G be an (𝑓1, 𝑓2)-efficiently Baker class. Then, for any 𝜀 > 0 and any instance
(A,C) of general-valued CSP where A is a Q≥0-valued structured with G(A) ∈ G and C is diagonal-
isable, we can find a solution of value at most (1 + 𝜀) minval(A,C) in time 𝑓1 (|A|) + 𝑓2 (𝑐 |A|) · 𝑐1/𝜀

where 𝑐 depends on C and G only.

Here the constant 𝑐 depends polynomially on |C| and exponentially on the maximum ratio

between certain finite positive values of C. Since every class of graphs that excludes a minor is

(O
(
𝑛2

)
,O(𝑛))-efficiently Baker [16, Theorem 2.1], Section 1.1 in fact gives an EPTAS on such

classes for any fixed diagonalisable structure C.
Intuitively, diagonalisability allows to interpolate between any two homomorphisms, and we

show this gives a natural way to combine partial solutions in the way needed in Baker’s technique

(generalising the simple combination used for Vertex Cover: taking the set-theoretic sum of solu-

tions). This proof (Theorem 3.7), which is an entirely new connection between diagonalisability

and approximation, is our main contribution.

Maximum Solution
For maximisation, we extend the results of [44], which restricted the right-hand side C to be

Q≥0-valued. We additionally allow −∞ values, but the set of tuples y ∈ 𝐶𝑛
with 𝑓 C (y) = −∞ is

restricted to be monotone in the following very weak sense. There is an element 𝑐⊥ ∈ 𝐶 such that

whenever y is feasible (𝑓 C (y) ≠ −∞) and y′ is a tuple obtained from y by replacing some of its

elements with 𝑐⊥, then y′ is still feasible (𝑓 C (y′) ≠ −∞).

We call structures C satisfying this condition Max-Sol structures and we define Max-SolG to be

the general-valued CSP restricted to instances (A,C) where A is a Q≥0-valued structured with

G(A) ∈ G and C is a Max-Sol structure.

For example, Weighted Maximum Independent Set is equivalent to the Max-Sol case where C
is the structure with domain {0, 1}, with a 2-ary function 𝑓 C (1, 1) = −∞, 𝑓 C (0, 0) = 𝑓 C (1, 0) =

𝑓 C (0, 1) = 0, and a unary function 𝑢C (0) = 0, 𝑢C (1) = 1 (so 𝑐⊥ = 0).

Our main result for maximisation (proved in Section 5) is the following.

Theorem 1.2. Let G be a class of graphs that is fractionally-treewidth-fragile. Then Max-SolG
admits a PTAS.
More precisely, for all 𝜀 > 0, there is an algorithm that given (A,C), outputs a value between

maxval(A,C) and (1 + 𝜀) · maxval(A,C) in time (|A| + |C|)𝑘 (𝜀) , where 𝑘 (𝜀) is a function depending
on G only.2

The algorithm in Theorem 1.2 does nothing more than solve a Θ(𝑘 (𝜀))-th level of the Sherali-

Adams linear programming relaxation. This allows the algorithm to be oblivious to the graph

structure, i.e. we do not assume that the fractional-treewidth-fragility of G can be efficiently

2
If G is fractionally-tw-fragile with rate 𝑘 (𝜀) (Definition 5.16), then the exponent in the running time is O(𝑘 (Ω (𝜀))) .
See [17] for a fragility rates of various graph classes.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

certified. Thus the left-hand side restriction on Gaifman graphs is the most general for which a

PTAS is known; as discussed earlier, it includes excluded-minor classes and more. In fact similarly

to [44], we conjecture that Max-SolG does not admit a PTAS for any G that is not fractionally-

treewidth-fragile. Since Max-SolG is strictly more general (by allowing negative infinite values),

this conjecture might be easier to prove than the one in [44].

On the other hand, this approach does not give an EPTAS even when C is fixed (i.e. the exponent

of |A| increases with 𝜀), and it does not construct an assignment — it only approximates the

optimum value. In contrast, given a class of graphs G for which fractional-treewidth-fragility can

be efficiently certified (which includes essentially all known examples), it is straightforward to

construct solutions to Max-SolG of value at least (1 − 𝜀) · maxval(A,C) in time |A| · |C|𝑘 (𝜀) .
Our main contribution in proving Theorem 1.2 is finding the right analogues of the definitions

from [44] – a notion of “closeness” of structures, a dual notion that certifies this closeness with

concrete mappings (a distribution of “partial homomorphisms”, see Section 5), and the proof of

their equivalence (Lemma 5.7). In particular, while the name “partial homomorphism” may sound

deceptively simple, we found that pin-pointing their definition (in the context of MaxSol) proved

to be a surprisingly intricate balancing act.

We complement Theorem 1.2 with simple constructions which show that it is impossible to

extend other results of [44] from the setting of purely optimisation Max-CSPs to the setting of

general-valued CSPs, which include crisp constraints. In [44] the notion of pliability is defined

(for Max-CSPs), which is a left-hand side restriction that takes the whole structure A into account,

not only its Gaifman graph, as done in this introduction so far; this allowed the authors of [44] to

show that the same framework applies not only to sparse, fractionally-treewidth-fragile instances

of Max-CSPS, but also to dense structures. We define an analogous notion of strong pliability and

show in Lemma 5.13, similarly to [44], the existence of a PTAS (for general-valued CSPs) under

the strong pliability assumption on the left-hand side structure, which takes the whole structure

A into account, not only its Gaifman graph. (Thus this is a more general tractability result than

Theorem 1.2.) However, in Section C we show that even the simplest class of dense structures,

namely the class of {0, 1}-valued cliques, does not satisfy strong pliability. In fact, it is easy to

show (cf. Section C) that the Max-Sol problem is hard to approximate even when the left-hand side

structures are restricted to cliques.

Paper organisation. Section 2 introduces basic notations and defines the studied computational

problems. The main result for minimisation, Section 1.1, is technical and proved in Section 4. In

Section 3, we present the main ideas in the special case of planar structures. The main result for

maximisation, Section 1.2, is proved in Section 5. Some of the proofs are deferred to Appendices A,

B, and C.

2 PRELIMINARIES
For an integer 𝑘 , we denote by [𝑘] the set {1, . . . , 𝑘}. For a tuple x, we denote by 𝑥𝑖 its 𝑖-th coordinate
and by Set(x) the set of elements appearing in x. For two tuples x and y of length 𝑛, we write (x, y)
as a shorthand for ((𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)). For a tuple x of length 𝑛 and a map ℎ, we denote

by ℎ(x) the coordinate-wise application of ℎ; i.e., ℎ(x) = (ℎ(𝑥1), . . . , ℎ(𝑥𝑛)).

General-valued CSPs. A signature is a finite set 𝜎 of (function) symbols such as 𝑓 , each with

a specified arity ar(𝑓). For a set of values Ω ⊆ Q ∪ {−∞, +∞}, an Ω-valued structure A over a

signature 𝜎 (or 𝜎-structure, for short) is a finite domain𝐴 together with a function 𝑓 A : 𝐴ar(𝑓) → Ω
for each symbol 𝑓 ∈ 𝜎 . We denote by 𝐴, 𝐵,𝐶, . . . the domains of structures A,B,C,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:7

We define tup(A) to be the set of all pairs (𝑓 , x) such that 𝑓 ∈ 𝜎 and x ∈ 𝐴ar(𝑓)
; and tup>0

(A) to
be the set of all pairs (𝑓 , x) ∈ tup(A) with 𝑓 A (x) > 0.

We assume a straightforward table encoding of structures: the interpretation 𝑓 A of a symbol 𝑓 in

a structure A is encoded as a collection of triples {(𝑓 , x, 𝑓 A (x)) | (𝑓 , x) ∈ tup(A)}. Thus, the size
of a 𝜎-structure A is roughly

|A| = |𝜎 | + |𝐴| +
∑︁

(𝑓 ,x) ∈tup(A)
log |𝜎 | + ar(𝑓) log |𝐴| + |𝑒𝑛𝑐 (𝑓 A (x)) |

where 𝑒𝑛𝑐 (·) denotes a reasonable encoding for elements of Q.
We consider the following computational problem.

Definition 2.1. An instance of the general-valued CSP (VCSP) consists of an ordered pair of

𝜎-structures (A,C). For a mapping ℎ : 𝐴 → 𝐶 , we define the value of ℎ to be

val(ℎ) =
∑︁

(𝑓 ,x) ∈tup(A)
𝑓 A (x) 𝑓 C (ℎ(x)) .

The goal is to find the minimum or maximum value over all possible mappings ℎ : 𝐴 → 𝐶 , denoted

minval(A,C) or maxval(A,C), respectively.

On the left-hand side we will only use Q≥0-valued structures, with letters A,B; on the right-hand

side we will only use Q≥0 ∪ {∞} or Q≥0 ∪ {−∞}-valued structures, respectively, for minimisation

and maximisation, with letters C,D.
For 𝜆 ≥ 0 we write 𝜆A for the rescaled 𝜎-structure with domain 𝐴 and 𝑓 𝜆A (x) := 𝜆𝑓 A (x), for

(𝑓 , x) ∈ tup(A). For a 𝜎-structure A and subset of the domain 𝑋 ⊆ 𝐴, we define A[𝑋] to be the

restriction of A to 𝑋 . That is, A[𝑋] is a 𝜎-structure over the domain 𝑋 , and 𝑓 A[𝑋] (x) = 𝑓 A (x) for
each 𝑓 ∈ 𝜎 and x ∈ 𝑋 ar(𝑓)

.

Following the influential work on decision CSPs by Grohe, Schwentick, and Segoufin [22], and

Grohe [21], we will focus on fragments of the VCSP parametrised by the class of left-hand side

structures (or their underlying class of graphs). Given a 𝜎-structureA, the Gaifman graph (or primal
graph), denoted by G(A), is the graph whose vertex set is the domain 𝐴, and whose edges are the

pairs {𝑢, 𝑣} for which there is a tuple x and a symbol 𝑓 ∈ 𝜎 such that 𝑢, 𝑣 appear in x and 𝑓 A (x) > 0.

For a graph parameter p and a structure A, we define p(A) B p(G(A)) to be the parameter of

the Gaifman graph of A. In particular, the treewidth of A is defined as tw(A) B tw(G(A)). (We

will only use treewidth and excluded minors as black-boxes and thus will not need their definitions.

The reader is referred to Diestel’s textbook for details [13].)

Relational structures. A relational 𝜎-structure C includes for each symbol 𝑓 ∈ 𝜎 a relation

𝑓 C ⊆ 𝐶ar(𝑓)
. We will view relational structures as {0,∞}-valued structures by associating each

function 𝑓 C : 𝐶ar(𝑓) → {0,∞} to the relation given by the zero-valued tuples {x | 𝑓 C (x) = 0}. A
homomorphism from a relational 𝜎-structure C to a relational 𝜎-structure D is a map𝜓 : 𝐶 → 𝐷

that satisfies, for every 𝑓 ∈ 𝜎 and every x ∈ 𝐶ar(𝑓)
, 𝑓 D (𝜓 (x)) ≤ 𝑓 C (x).

For an 𝑛-ary function 𝑓 , we denote by Feas(𝑓) and Opt(𝑓) the 𝑛-ary relations defined by

Feas(𝑓) = {x | 𝑓 (x) < ∞} and Opt(𝑓) = {x | 𝑓 (x) = 0}, respectively. Let C be a 𝜎-structure.

The relational 𝜎-structure Feas(C) contains, for each 𝑓 ∈ 𝜎 , the relation Feas(𝑓 C); similarly, the

relational 𝜎-structure Opt(C) contains, for every 𝑓 ∈ 𝜎 , the relation Opt(𝑓 C).
Our results will be concerned with two particular types of right-hand side structures.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

Maximum Solution
For the following definition, recall the example of Weighted Maximum Independent Set from Sec-

tion 1. One should think of the element 𝑐 in this context as not selecting a vertex in an independent

set; the partial order on 𝐶𝑛
then says that a subset of an independent set is also independent.

Definition 2.2 (⊑𝑐). For an element 𝑐 of a set𝐶 , we denote by ⊑𝑐 the partial ordering on𝐶 defined

by 𝑐 ⊑𝑐 𝑥 and 𝑥 ⊑𝑐 𝑥 for all 𝑥 ∈ 𝐶 . This induces a partial ordering on 𝐶𝑛
coordinate-wise: we

write x ⊑𝑐 y for x, y ∈ 𝐶𝑛
if we can obtain x from y by changing some (possibly none or all) of its

coordinates to 𝑐 .

Definition 2.3 (Max-Sol). Let 𝜎 be a finite signature. A 𝜎-structure C is called aMax-Sol structure if
it is (Q≥0∪{−∞})-valued and there is an element 𝑐⊥ ∈ 𝐶 such that for all 𝑓 ∈ 𝜎 , the following holds:
whenever 𝑓 C (y) ≥ 0, we have 𝑓 C (x) ≥ 0, for all x ⊑𝑐⊥ y in 𝐶ar(𝑓)

. Equivalently, if a tuple y has

non-negative value (not −∞), then changing some of its coordinates to 𝑐⊥ still gives a non-negative

value. To avoid clutter, we write ⊑⊥ in place of ⊑𝑐⊥ , with the choice of 𝑐⊥ ∈ 𝐶 implicit.

We denote by Max-SolG the restriction of the VCSP to instances (A,C) where A is a Q≥0-valued

structure with G(A) ∈ G and C is a Max-Sol structure.

Observe that every Q≥0-valued structure is a Max-Sol structure; thus Max-SolG is more general

than the restriction to Q≥0-valued right-hand side structures, which is the problem considered

in [44].

Example 2.4. As explained in the introduction, Max-Sol structures can capture problems such as

Weighted Maximum Independent Set. Another example is finding a 3-colourable induced subgraph

with the maximum number of edges: take C with domain 𝐶 = {𝑅,𝐺, 𝐵,⊥} (representing red, green,

blue, as well as a fourth element corresponding to vertices not selected into the induced subgraph)

and a single symbol of arity two with values 𝑓 C (𝑅, 𝑅) = 𝑓 C (𝐺,𝐺) = 𝑓 C (𝐵, 𝐵) = −∞, 𝑓 C (𝑥,𝑦) = 1

for 𝑥 ≠ 𝑦 ∈ {𝑅,𝐺, 𝐵} and 𝑓 C (𝑥,𝑦) = 0 otherwise. This extends to maximising the number of

vertices (by introducing a unary relation), to weighted versions (by giving weights to vertices and

edges of the left-hand-side structure A), and to finding a maximum induced substructure satisfying

an arbitrary CSP.

Remark 2.5. The “downward monotone Strict-CSP” from [36] corresponds to Definition 2.3 with

some extra conditions. Firstly, there is a special unary symbol 𝑢 ∈ 𝜎 such that 𝑢C is Q≥0 valued

and all other symbols 𝑓 ∈ 𝜎 are {0,−∞}-valued (hence they express “strict” constraints). Secondly,

there is a total order on 𝐶 , and for each symbol 𝑓 ∈ 𝜎 other than 𝑢, 𝑓 C is anti-monotone; in other

words, lowering some coordinates of a tuple in𝐶ar(𝑓)
can not change its value from 0 to −∞. (Hence

the minimum element plays the role of the bottom label 𝑐⊥ ∈ 𝐶 .)

Minimum Solution
Definition 2.6 (Min-Sol). Let 𝜎 be a finite signature. A 𝜎-structure C is called Min-Sol if it is

(Q≥0 ∪ {∞})-valued and there is a total order ≤⊤ on 𝐶 such that: for all 𝑓 ∈ 𝜎 with ar(𝑓) > 1 and

all tuples x, y ∈ 𝐶𝑛
with x ≤⊤ y (coordinate-wise) we have:

• 𝑓 C (x) < ∞ implies 𝑓 C (y) < ∞, and

• 𝑓 C (x) = 0 implies 𝑓 C (y) = 0.

We denote by Min-SolG the restriction of the VCSP to instances (A,C) where A is a Q≥0-valued

structure with G(A) ∈ G and C is a Min-Sol structure.

Remark 2.7. The “upward monotone Strict-CSP” from [36] corresponds to Definition 2.6 with the

extra conditions that there is only one unary symbol 𝑢, 𝑢C is monotone and injective, and all other

cost functions 𝑓 C are {0,∞}-valued (hence they express “strict” constraints).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:9

Remark 2.8. We observe that some structure (such as a total order) on the domain of a right-hand

side Min-Sol structure is needed: We show how to encode 3-Colouring of planar graphs, which

does not admit a PTAS (assuming P≠NP).

Let 𝐺 be a planar graph. Let A be a structure with domain 𝑉 (𝐺) over the signature 𝜎 = {𝑢, 𝑓 }
of arities 1 and 2, respectively. Let 𝑢A (𝑥) = 1 for all 𝑥 ∈ 𝑉 (𝐺), and 𝑓 A (𝑥,𝑦) = 1 if {𝑥,𝑦} ∈
𝐸 (𝐺) and 0 otherwise. Let C be a right-hand side structure with domain 𝐶 = {𝑅,𝐺, 𝐵, 𝑐⊤}. Here
we think of 𝑅,𝐺, 𝐵 as three colours, and 𝑐⊤ as a fourth extra colour we want to avoid using.

We allow a monochromatic 𝑐⊤ edge. Let 𝑢C (𝑥) = 1 for 𝑥 = 𝑐⊤ and 0 otherwise; 𝑓 C (𝑅, 𝑅) =

𝑓 C (𝐺,𝐺) = 𝑓 C (𝐵, 𝐵) = ∞, and 0 for other pairs of values (including (𝑐⊤, 𝑐⊤)). If 𝐺 is 3-colourable

then minval(A,C) = 0. Otherwise, minval(A,C) ≥ 1. Note that 𝑓 C respects the partial order ⊑𝑐⊤ ,

but it does not respect any total order on 𝐶 .

3 MINIMISATION ON PLANAR STRUCTURES
3.1 Diagonalisability
Briceño, Bulatov, Dalmau, and Larose defined the concepts of product structure, dismantlability,

adjacency, and link graph for relational structures [5]. In this section, we will extend these concepts

to valued structures in a natural way. In particular, our definitions (for structures) coincide with

the definitions in [5] (for relational structures) when viewed as {0,∞}-valued structures.

Informally, we shall consider any two positive finite values to be basically equivalent, because

we will be able to bound differences between them by a constant factor; so we shall consider an

increase in value significant only if it increases from zero to positive or from finite to infinite. For a

structure C, we say an element 𝑎 ∈ 𝐶 is dominated by an element 𝑏 ∈ 𝐶 if we can always replace 𝑎

with 𝑏: for any mapping ℎ : 𝐴 → 𝐶 (from any structure A), assignments to 𝑎 can be changed to

assignments to 𝑏 without increasing val(ℎ) significantly (from zero to positive or from finite to

infinite). A structure C is diagonalisable if in the product C × C (defined below), one can remove

dominated elements one by one until only the diagonal {(𝑐, 𝑐) | 𝑐 ∈ 𝐶} is left. We will later see how

this allows to “blend in” two different mappings ℎ1, ℎ2 from A to C by considering them together

as a mapping to C2
.

We now proceed with formal definitions. Given two (valued) 𝜎-structures C and D, we call

𝜓 : 𝐶 → 𝐷 a homomorphism from C to D if 𝜓 is a homomorphism from Feas(C) to Feas(D)
and from Opt(C) to Opt(D) (in other words, finite-valued tuples map to finite-valued tuples and

zero-valued tuples map to zero-valued tuples). It will be more convenient to consider both the

Feas(C) and Opt(C) simultaneously. Thus with every structure C we will associate a relational

structure Rel[C], defined as follows.

Definition 3.1. Let 𝜎 be a valued signature. For any 𝑓 ∈ 𝜎 , we denote by 𝑓1 and 𝑓2 two new

relational symbols of the same arity as 𝑓 . Let C be a 𝜎-structure and let 𝜎 ′ =
⋃

𝑓 ∈𝜎 {𝑓1, 𝑓2}. Define
the relational 𝜎 ′

-structure Rel[C] over the domain 𝐶 as follows: for each 𝑓 ∈ 𝜎 , let 𝑓
Rel[C]

1
=

Feas(𝑓 C) = {x | 𝑓 C (x) < ∞} and 𝑓 Rel[C]
2

= Opt(𝑓 C) = {x | 𝑓 C (x) = 0}.

We can now define the concepts of interest for structures C via the already existing concepts for

relational structures Rel[C] from [5]. We use the following observation.

Observation 3.2. For 𝑥,𝑦 ∈ Q≥0 ∪ {∞}, there exists𝑀 > 0 such that 𝑦 ≤ 𝑀 · 𝑥 if and only if:

• if 𝑥 < ∞, then 𝑦 < ∞, and

• if 𝑥 = 0, then 𝑦 = 0.

Given 𝜎-structures C and D, we say that𝜓 : 𝐶 → 𝐷 is a homomorphism if𝜓 is a homomorphism

from Rel[C] to Rel[D]. Equivalently,𝜓 is a homomorphism if there exists𝑀 > 0 such that for all

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

(𝑓 , x) ∈ tup(C),
𝑓 D (𝜓 (x)) ≤ 𝑀 · 𝑓 C (x).

Here we can use a uniform bound 𝑀 because we only work with finite structures; it will be

convenient to use this equivalent definition to keep track of the bound𝑀 .

Given 𝜎-structures C and D we define the product structure C × D as a 𝜎-structure with domain

𝐶 × 𝐷 and for each 𝑓 ∈ 𝜎 ,
𝑓 C×D ((x, y)) = 𝑓 C (x) + 𝑓 D (y).

Let 𝜋1 (𝑥,𝑦) = 𝑥 and 𝜋2 (𝑥,𝑦) = 𝑦 be the projections to the first and second coordinate, respectively.

Note that 𝜋1, 𝜋2 are homomorphisms from C2
to C for any C. See Figure 1.

0 3

1

C

0 3

1

0

3

1

𝑎1 𝑎2

𝑎3

0

3

3

6

1 4

1

4

2

×

C C2

Fig. 1. Left: a digraph structure C (the signature has a single symbol of arity 2) with three vertices and three
arcs (tuples) with finite values – the remaining arcs have infinite values and are not drawn. Right: the product
C × C (with three vertices 𝑎1, 𝑎2, 𝑎3 distinguished for later).

We say that 𝑎 ∈ 𝐶 is dominated by 𝑏 ∈ 𝐶 if there is an 𝑀 > 0 such that for all (𝑓 , x) ∈ tup(C)
with 𝑥𝑖 = 𝑎, we have

𝑓 C (𝑥1, . . . , 𝑥𝑖−1, 𝑏, 𝑥𝑖+1, . . .) ≤ 𝑀 · 𝑓 C (x).
We say that 𝑎 ∈ 𝐶 is dominated in C if 𝑎 is dominated by 𝑏 ≠ 𝑎 for some 𝑏 ∈ 𝐶 . A sequence of

𝜎-structures C0, . . . ,Cℓ is a dismantling sequence if there exists 𝑎𝑖 ∈ 𝐶𝑖 such that 𝑎𝑖 is dominated in

C𝑖 , and C𝑖+1 is the substructure of C𝑖 induced by 𝐶𝑖 \ {𝑎𝑖 }, for 𝑖 ∈ {0, . . . , ℓ − 1}. In this case, we

say that C0 dismantles to Cℓ . A structure C is diagonalisable if C2
dismantles to the substructure

induced by its diagonal Δ(𝐶2) = {(𝑐, 𝑐) | 𝑐 ∈ 𝐶}.

Example 3.3. Consider C2
in Figure 1. Let 𝑓 be the unique symbol (of arity two) in the signature.

Let 𝑎1, 𝑎2, 𝑎3 be the vertices as drawn and let 𝑏 be the vertex of C2
with a loop of value 2. Then,

for example, the value of the arc from 𝑎3 to 𝑏 is 4, or more formally, 𝑓 C (𝑎3, 𝑏) = 4. For the vertex

𝑎1, all incident arcs have value ∞ (formally, 𝑓 C (𝑎1, 𝑥) = 𝑓 C (𝑥, 𝑎1) = ∞ for all 𝑥 ∈ 𝑉 (C2)), so
it is dominated by every other vertex. The vertex 𝑎2 is dominated by 𝑏 (with 𝑀 = 4). After

removing 𝑎2, the vertex 𝑎3 is dominated by 𝑏 as well (this is false before removing 𝑎2, because

𝑓 C (𝑎3, 𝑎2) = 1 while 𝑓 C (𝑏, 𝑎2) = ∞, so we cannot guarantee 𝑓 C (𝑏, 𝑥) ≤ 𝑀 · 𝑓 C (𝑎3, 𝑥)). Thus
C2,C2 \ {𝑎1},C2 \ {𝑎1, 𝑎2},C2 \ {𝑎1, 𝑎2, 𝑎3} is a dismantling sequence. Symmetrical vertices can be

similarly dominated, hence C2
dismantles to Δ(𝐶2), meaning C is diagonalisable. On the other

hand, C is not a MinSol structure (there is no way to order the two peripheral vertices). We refer

to [6] for more examples of dismantlable graphs.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:11

Homomorphisms 𝜓, 𝜙 from C to D are adjacent if there exists 𝑀 > 0 such that for all (𝑓 , x) ∈
tup(C) and y ∈ 𝐷ar(𝑓)

with 𝑦𝑖 ∈ {𝜓 (𝑥𝑖), 𝜙 (𝑥𝑖)}, we have
𝑓 D (y) ≤ 𝑀 · 𝑓 C (x). (1)

Thus 𝑎 is dominated by 𝑏 in C if and only if the function 𝑠 : 𝐶 → 𝐶 \ {𝑎} that maps 𝑎 to 𝑏 and

everything else identically is a homomorphism from C to C, and 𝑠 is adjacent to the identity

homomorphism. (This is stronger than just 𝑠 being a homomorphism, since 𝑓 C (𝑎, 𝑎, 𝑎) = 0 implies

not only 𝑓 C (𝑏,𝑏, 𝑏) = 0, but also 𝑓 C (𝑎, 𝑎, 𝑏) = 0, for example). Note that adjacency is a symmetric

but not a transitive property.

Finally, for 𝜎-structures C and D, we define the link graph 𝐿(C,D) to be the simple graph whose

vertices are the homomorphisms from C to D, with edges between adjacent homomorphisms.

The following theorem was proved in [5, Theorem 3.6] for relational structures but the result

easily extends to structures.

Theorem 3.4. Let C be a 𝜎-structure. Then, the following are equivalent.
• C is diagonalisable;
• 𝜋1 and 𝜋2 are connected in 𝐿(C2,C) by a path of adjacent idempotent homomorphisms.
(We say a function𝜓 : 𝐶2 → 𝐶 is idempotent if𝜓 (𝑐, 𝑐) = 𝑐 for all 𝑐 ∈ 𝐶 .)

Proof. This follows from the fact that Rel[C2] = Rel[C]2
and that our definitions are the same

as those of [5, Theorem 3.6] applied to H = C and 𝐽 = Δ(𝐶2). Specifically a function 𝜙 : 𝐶 → 𝐶 is a

homomorphism fromC toC if and only if it is a homomorphism fromRel[C] toRel[C]. Similarly,𝑎 is

dominated by𝑏 inC2
if and only if𝑎 is dominated by𝑏 inRel[C2] = Rel[C]2

. ThusC is diagonalisable
if and only if Rel[C]2

dismantles to its full diagonal (not just any subset of it). Further 𝜙,𝜓 : 𝐶 → 𝐶

are adjacent homomorphisms from C to C if and only if they are adjacent homomorphisms from

Rel[C] to Rel[C]. Finally, 𝜋1, 𝜋2 are connected by a path of adjacent idempotent homomorphisms

if and only if they are 𝐽 -connected by any homomorphism in 𝐿(Rel[C]2,C) in the sense of [5]. □

We now show that diagonalisability is more general than the Min-Sol condition.

Lemma 3.5. Let C be a Min-Sol structure. Then C is diagonalisable. Moreover, there is a path on 3
vertices between 𝜋1 and 𝜋2 in 𝐿(C2,C).

Proof. Define 𝜙 : 𝐶2 → Δ(𝐶2) by 𝜙 (𝑥,𝑦) = (max(𝑥,𝑦),max(𝑥,𝑦)), where max is with respect

to the total order on 𝐶 . We claim for each (𝑥,𝑦) ∈ 𝐶2
, 𝑎 B (𝑥,𝑦) is dominated by 𝑏 B 𝜙 (𝑥,𝑦).

Indeed, for each (𝑓 , (x, y)) ∈ tup(C2) with (𝑥𝑖 , 𝑦𝑖) = 𝑎 and 𝑛 B ar(𝑓) > 1, we have

𝑓 C
2 ((𝑥1, 𝑦1), . . . , 𝑏, . . . , (𝑥𝑛, 𝑦𝑛))

= 𝑓 C (𝑥1, . . . ,max(𝑥𝑖 , 𝑦𝑖), . . . , 𝑥𝑛) + 𝑓 C (𝑦1, . . . ,max(𝑥𝑖 , 𝑦𝑖), . . . , 𝑦𝑛)
≤ 𝑀 · 𝑓 C (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑛) +𝑀 · 𝑓 C (𝑦1, . . . , 𝑦𝑖 , . . . , 𝑦𝑛)

= 𝑀 · 𝑓 C2 ((x, y)) ,
for some𝑀 > 0, where the inequality follows from the assumption that C is a Min-Sol structure.

For 𝑓 ∈ 𝜎 with ar(𝑓) = 1, we have that 𝑎 is dominated by 𝑏 because with𝑀 ≥ 2 we always have

𝑓 C
2 (𝑏) = 𝑓 C (max(𝑥,𝑦)) + 𝑓 C (max(𝑥,𝑦)) ≤ 𝑀 · (𝑓 C (𝑥) + 𝑓 C (𝑦)) = 𝑀 · 𝑓 C2 (𝑎).

Therefore, we can dismantle the non-diagonal elements (𝑥,𝑦) in any order to obtain a dismantling

sequence from C2
to the substructure induced by Δ(𝐶2).

Let 𝜇 : 𝐶2 → 𝐶 be defined by 𝜇 (𝑥,𝑦) = max(𝑥,𝑦), where max is with respect to the total order

defined on 𝐶 . Then similarly as above, one can check 𝜋1, 𝜇, 𝜋2 is a path in 𝐿(C2,C). □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

We remark that [5] show many other equivalent formulations, including a property known as

finite duality. They also discuss how finite duality allows to efficiently solve many problems such

as homomorphism extensions. However, in our setting it is Rel[C] rather than C that is restricted,

so such a property would not take finite, positive values of C into account.

Instead, our approach is based on Baker’s technique: we partition graph into breadth-first-search

layers and use the fact that the problem can be solved exactly on a subgraph induced by a few

consecutive layers. To merge such solutions into one, we use a small number of overlapping layers

and use the path between projections 𝜋1, 𝜋2 given by Theorem 3.4 to “blend in” two solutions. By

increasing the number of exactly solved, non-overlapping layers, we can reduce any loss due to

differences between finite, positive values.

3.2 PTAS
Baker’s approach relies on the following structural property of planar graphs, which is e.g. a direct

consequence of [4, Theorem 83].

Lemma 3.6. Let 𝐺 be a planar graph and 𝑣0 ∈ 𝑉 (𝐺) be an arbitrary vertex. Let 𝐿𝑖 be the set of
vertices at distance exactly 𝑖 from 𝑣0 (i.e. the 𝑖th layer of a BFS from 𝑣0). Then, the subgraph induced
by any 𝑡 consecutive layers 𝐺 [𝐿𝑖 ∪ 𝐿𝑖+1 ∪ · · · ∪ 𝐿𝑖+𝑡+1] has treewidth at most 3𝑡 .

Theorem 3.7. Let P be the class of planar graphs. Then, for any 𝜀 > 0 and any VCSP instance (A,C)
with G(A) ∈ P and C diagonalisable, we can find a solution of value at most (1 + 𝜀) minval(A,C) in
time |A| · 𝑐1/𝜀 where 𝑐 depends on C only.

Proof. Let (A,C) be a VCSP instance as per the theorem. Generally, for any left-hand side

structure B, we will write valB (ℎ) for the value of an assignment ℎ : 𝐵 → 𝐶 with respect to the

instance (B,C), and write val(·) for valA (·) by default.

By Theorem 3.4 there is a sequence of adjacent homomorphisms𝜓1, . . . ,𝜓ℓ from C
2
to C such

that 𝜓1 = 𝜋1 and 𝜓ℓ = 𝜋2. Let 𝑀 ≥ 1 be sufficiently large such that (1) holds for all adjacent

homomorphisms𝜓𝑖 and𝜓𝑖+1, 𝑖 ∈ {1, . . . , ℓ − 1}. Let 𝑘 B ⌈ 2𝑀
𝜀
⌉.

Let A be a Q≥0-valued structure and let 𝐺 = G(A) ∈ P be its Gaifman graph. Fix an arbitrary

vertex 𝑣0 ∈ 𝐴 in G(A). For 𝑛 ∈ Z, let 𝐿𝑛 ⊆ 𝐴 be the set of vertices whose distance from 𝑣0 is in

{𝑛ℓ + 1, . . . , 𝑛ℓ + ℓ}. So 𝐿𝑛 are intervals of ℓ layers, which partition the vertex set 𝐴. See Figure 2.

For each 𝑗 ∈ Z and 𝑖 ∈ [𝑘] let
𝐵𝑖𝑗 B 𝐿 𝑗𝑘−𝑖 ∪ · · · ∪ 𝐿 𝑗𝑘−𝑖+𝑘 ,

dist. from 𝑣0

intervals of ℓ layers

0, 1, 2, . . . , ℓ, . . . , 𝑛ℓ + 1, 𝑛ℓ + 2, . . . 𝑛ℓ + ℓ, . . .

𝐿−1 𝐿0 𝐿𝑛

blocks

interval of ℓ layers

overlap

𝐿−1 𝐿0 𝐿1 . . . 𝐿𝑘 𝐿𝑘+1 . . . 𝐿
2𝑘 . . . 𝐿

3𝑘 . . .

𝐵0

−1

𝐵0

0
𝐵0

1

𝐵0

2

𝑂0

Fig. 2. Illustration of the sets 𝐿𝑛 , 𝐵𝑖𝑗 and 𝑂
𝑖 for 𝑖 = 0 (other 𝑖 look the same, just shifted).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:13

so that 𝐵𝑖𝑗 is a block of (𝑘 +1) · ℓ consecutive layers. Iterating through the indices 𝑗 gives consecutive

blocks that overlap on ℓ layers; the index 𝑖 shifts which layers are in the overlap. That is,

𝐵𝑖𝑗 ∩ 𝐵𝑖𝑗+1
= 𝐿(𝑗+1)𝑘−𝑖 .

Define the overlaps 𝑂𝑖 =
⋃

𝑗 𝐵
𝑖
𝑗 ∩ 𝐵𝑖𝑗+1

for 𝑖 ∈ [𝑘]. We note that the 𝑂1, . . . ,𝑂𝑘
are disjoint.

Consider an optimal solution ℎ∗ : 𝐴 → 𝐶 for the VCSP instance (A,C). As the 𝑂𝑖
are all disjoint,

there exists 𝑖∗ ∈ [𝑘] with

valA[𝑂𝑖∗] (ℎ∗ |𝑂𝑖∗) ≤
1

𝑘
val(ℎ∗) ≤ 𝜀

2𝑀
val(ℎ∗).

We henceforth write 𝐵 𝑗 = 𝐵𝑖
∗
𝑗 and 𝑂 = 𝑂𝑖∗

. Note that, just as in Baker’s original approach, the

choice of 𝑖∗ is not available to the algorithm, as we do not know ℎ∗. However, as the number of

choices for 𝑖 ∈ [𝑘] is linear in 1/𝜀, we can proceed with each possible 𝑖 , construct the solution ℎ′ as
discussed below and output the one with the lowest value val(ℎ′).

Let A+
be a 𝜎-structure with domain 𝐴 defined by

𝑓 A
+ (x) =

{
𝑀 · 𝑓 A (x) if Set(x) ⊆ 𝑂
𝑓 A (x) otherwise,

so that tuples which lie within 𝑂 are amplified by a factor of𝑀 .

For each 𝑗 , the Gaifman graph G(A+ [𝐵 𝑗]) has treewidth at most O((𝑘 + 1)ℓ) = O(𝑀ℓ/𝜀) by
(3.6). Thus for each 𝑗 , we can find a tree decomposition [3] and compute an optimal solution ℎ 𝑗

to (A+ [𝐵 𝑗],C) in total time |A| · |C|O(𝑀ℓ/𝜀)
via standard dynamic programming [42]. Then by

optimality of ℎ 𝑗 ,

valA+ [𝐵 𝑗] (ℎ 𝑗) ≤ valA+ [𝐵 𝑗] (ℎ∗ |𝐵 𝑗
).

Therefore, summing over all 𝑗 , we count the contribution of every constraint once, except for

constraints whose scope is contained in 𝑂 (and thus in exactly two sets 𝐵 𝑗), which are counted 2𝑀

times in total:∑︁
𝑗

valA+ [𝐵 𝑗] (ℎ 𝑗) ≤
∑︁
𝑗

valA+ [𝐵 𝑗] (ℎ∗ |𝐵 𝑗
)

= valA (ℎ∗) + (2𝑀 − 1) · valA[𝑂] (ℎ∗ |𝑂) ≤ (1 + 𝜀) val(ℎ∗).
(2)

Observe that for each 𝑥 ∈ 𝐴, either 𝑥 ∉ 𝑂 and there is a unique 𝑗 for which 𝑥 ∈ 𝐵 𝑗 , or 𝑥 ∈ 𝑂
and there is a unique 𝑗 for which 𝑥 ∈ 𝐵 𝑗 ∩ 𝐵 𝑗+1. In the latter case, 𝑥 ∈ 𝐿(𝑗+1)𝑘−𝑖∗ and we let 𝑠 ∈ [ℓ]
denote the unique 𝑠 for which 𝑥 is at distance exactly ((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠 from 𝑣0. Let ℎ

′
: 𝐴 → 𝐶

be defined as follows

ℎ′(𝑥) =
{
ℎ 𝑗 (𝑥) if 𝑥 ∈ 𝐵 𝑗 for a unique 𝑗

𝜓𝑠
(
ℎ 𝑗 (𝑥), ℎ 𝑗+1 (𝑥)

)
if 𝑥 ∈ 𝐵 𝑗 ∩ 𝐵 𝑗+1 and 𝑑 (𝑥, 𝑣0) = ((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠 .

We claim that ℎ′ is a solution to (A,C) with val(ℎ′) ≤ (1 + 𝜀) minval(A,C). Let (𝑓 , x) ∈ tup>0
(A).

Note that by definition of the Gaifman graph G(A), all 𝑥𝑖 are adjacent to each other, so Set(x) is
contained in one or two consecutive layers. Consider the following two cases.

(a) If Set(x) ⊈ 𝑂 , then there is a unique 𝑗 such that Set(x) ⊆ 𝐵 𝑗 , and so ℎ′(𝑥𝑖) = ℎ 𝑗 (𝑥𝑖) for each
𝑖 , because either: 𝑥𝑖 ∉ 𝑂 and so ℎ′(𝑥𝑖) = ℎ 𝑗 (𝑥𝑖) by definition of ℎ′, or 𝑥𝑖 is in the last layer of

𝐵 𝑗−1 ∩ 𝐵 𝑗 and ℎ
′(𝑥) = 𝜓ℓ

(
ℎ 𝑗−1 (𝑥), ℎ 𝑗 (𝑥)

)
= 𝜋2

(
ℎ 𝑗−1 (𝑥), ℎ 𝑗 (𝑥)

)
= ℎ 𝑗 (𝑥), or analogously 𝑥𝑖 is

in the first layer of 𝐵 𝑗 ∩ 𝐵 𝑗+1 and𝜓1 = 𝜋1. Thus

𝑓 C (ℎ′(x)) = 𝑓 C (ℎ 𝑗 (x)) . (3)

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

(b) Else, if Set(x) ⊆ 𝑂 , then there is a unique 𝑗 such that Set(x) ⊆ 𝐵 𝑗 ∩ 𝐵 𝑗+1 = 𝐿(𝑗+1)𝑘−𝑖∗ . Since
Set(x) is contained in two consecutive layers, there is some 𝑠 such that all vertices in Set(x)
are at distance ((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠 or ((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠 + 1 from 𝑣0. Thus

ℎ(𝑥𝑖) ∈
{
𝜓𝑠

(
ℎ 𝑗 (𝑥𝑖), ℎ 𝑗+1 (𝑥𝑖)

)
, 𝜓𝑠+1

(
ℎ 𝑗 (𝑥𝑖), ℎ 𝑗+1 (𝑥𝑖)

)}
for each 𝑥𝑖 . Finally, as𝜓𝑠 and𝜓𝑠+1 are adjacent

𝑓 C (ℎ′(x)) ≤ 𝑀 · 𝑓 C2 (
ℎ 𝑗 (x), ℎ 𝑗+1 (x)

)
= 𝑀 ·

(
𝑓 C

(
ℎ 𝑗 (x)) + 𝑓 C (ℎ 𝑗+1 (x)

))
. (4)

Thus, by (2), (3), and (4),

valA (ℎ′) ≤
∑︁
𝑗

valA+ [𝐵 𝑗] (ℎ 𝑗) ≤ (1 + 𝜀) val(ℎ∗) = (1 + 𝜀) minval(A,C),

and so ℎ′ is the solution we seek. □

Remark 3.8. In Theorem 3.7 it would be sufficient to require thatC2
dismantles to any substructure

of its diagonal, as opposed to its full diagonal (as in the definition of diagonalisability). By [5,

Theorem 3.6] (extended as in Theorem 3.4) this is equivalent to saying that C dismantles to a

substructure I such that I is diagonalisable.
In this case, 𝜋1 and 𝜋2 are still connected in 𝐿(C2,C), but the homomorphisms in the path

connecting them will not be necessarily idempotent. However, the above proof (for the case of

planar graphs) did not rely on this property. This is in contrast with Theorem 1.1 (for Baker classes)

where we actually use the fact that the homomorphisms are idempotent.

Since a Min-Sol structure C is diagonalisable by Lemma 3.5, we have the following corollary.

Corollary 3.9. Let P be the class of planar graphs. Given any 𝜀 > 0 and instance (A,C) of
Min-SolP , we can find a solution of value at most (1 + 𝜀) minval(A,C) in time |A| · 𝑐1/𝜀 , where 𝑐
depends on C only.

We remark the proof yields 𝑐1/𝜀 = |C|O(𝑀ℓ/𝜀)
, and for Min-Sol structures Lemma 3.5 yields ℓ = 3;

hence when the bound𝑀 is a constant (e.g. for {0, 1,∞}-valued Min-Sol structures) the dependency

on C is simply |C|O(1/𝜀)
.

4 MINIMISATION ON BAKER CLASSES
4.1 Definition of Baker classes
A layering of a graph𝐺 is a function 𝜆 : 𝑉 (𝐺) → Z such that |𝜆(𝑢) − 𝜆(𝑣) | ≤ 1 for adjacent vertices

𝑢, 𝑣 in 𝐺 . That is, vertices of 𝐺 are partitioned into layers 𝜆−1 (𝑖) for 𝑖 ∈ Z and edges only go within

one layer or between two consecutive layers.

Baker’s technique [1] relies on a layering of planar graphs such that the subgraph induced by

𝜆−1 (𝐼), for any interval 𝐼 (a set of a few consecutive integers), has bounded treewidth (the bound

depending only on |𝐼 |), as formally stated in Lemma 3.6. As one might imagine, this can be iterated:

it would suffice that the subgraph induced by 𝜆−1 (𝐼) itself has such a “bounded treewidth layering”.

Consider now the class of graphs obtained from planar graphs by adding a single vertex, adjacent to

all the others; then a layering can only have three non-empty layers;
3
nevertheless, an algorithm can

easily circumvent this by guessing the assignment to the single new vertex (i.e. iterating through

all possibilities).

Dvořák [16] defined a Baker class as any class of graphs that can be dealt with in the above ways.

Informally, a class of graphs is Baker if any graph in the class can be reduced to an empty graph

3
There can be a non-empty layer before the universal vertex, a layer containing the universal vertex, and a layer after.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:15

by a bounded number of operations: either removing a single vertex, or selecting some layering 𝜆

and continuing separately with every interval in that layering (each subgraph induced by 𝜆−1 (𝐼)
for intervals 𝐼 of at most some size). It turns out the notion of treewidth is not necessary here, as

graphs of bounded treewidth also form a Baker class.

Before we state the definition formally, let us make a few remarks. The idea of iteratively going

through “some layering” and then into “every interval” is conveniently phrased as a strategy

winning a game in a bounded number of rounds (this will be particularly useful when we will want

to state an assumption that the choices, including layerings, can be constructed efficiently). Dvořák’s

definition considers graphs with a total ordering of their vertex set. Roughly speaking, this is to

restrict the definition to “monotone” strategies, where the single vertices to be deleted are decided

upfront — this restriction won’t be important for us, but we will state it as in [16] (let us also remark

that layerings are not restricted by the ordering). Finally, the definition is made a bit complicated by

the fact that the number of consecutive layers we may need to include in an interval may depend

on how deep we go (how many iterations of the game are done). This dependency is formalised

as a function 𝑟 below: for a fixed problem and approximation ratio the reader should think of some

arbitrarily quickly increasing function 𝑟 : N→ N. We now proceed with the formal definition.

Definition 4.1. For a graph 𝐺 and a function 𝑟 : N→ N, the Baker game on (𝐺, 𝑟) is defined as

follows, for two players I and II. Player I starts by selecting a total ordering of 𝑉 (𝐺). A state of the

game is a pair (𝐺 ′, 𝑡) where 𝐺 ′
is an induced subgraph of 𝐺 (with its ordering inherited from𝐺)

and 𝑡 is an integer describing how many rounds have passed. The initial state is (𝐺, 0) and Player I

wins in 𝑡 rounds if the state (∅, 𝑡) is reached, for any 𝑡 . Otherwise, in state (𝐺 ′, 𝑡), Player I chooses
one of the following actions:

• delete the first vertex 𝑣 of 𝐺 ′
, according to the ordering; Player II then takes no action and

the game continues in state (𝐺 ′ − 𝑣, 𝑡 + 1);
• select a layering 𝜆 of𝐺 ′

; Player II then selects an interval 𝐼 of at most 𝑟 (𝑡) (and no more than

|𝑉 (𝐺) |) consecutive integers and the game continues in state (𝐺 ′[𝜆−1 (𝐼)], 𝑡 + 1).

We say a function 𝑓 : N→ N is sub-additive if 𝑓 (𝑥) + 𝑓 (𝑦) ≤ 𝑓 (𝑥 + 𝑦).

Definition 4.2. For sub-additive4 functions 𝑓1, 𝑓2 : N→ N, we say a class of graphs G is (𝑓1, 𝑓2)-
efficiently Baker if for every function 𝑟 : N→ N there exists an integer 𝑡max and an algorithm such

that: for all 𝐺 ∈ G, the algorithm wins as Player I in the Baker game on (𝐺, 𝑟) in at most 𝑡max

rounds, using time 𝑓1 (|𝐺 |) to compute the initial ordering and using time 𝑓2 (|𝐺 |) to determine the

action at each state of the game.

As discussed in the introduction, efficiently Baker classes generalise excluded-minor classes.

Theorem 4.3 (Dvořák [16, Theorem 2.1]). Let G be a class of graphs that excludes a minor. Then
G is (O

(
𝑛2

)
,O(𝑛))-efficiently Baker.

4.2 PTAS
The proof for Baker classes largely follows the proof for planar graphs. To main difference is that

in order to handle exceptional vertices (also known as “apex” vertices) we will need to guess and

fix a partial assignment 𝜌 on them. When “blending in” two assignments ℎ 𝑗 (𝑥) and ℎ 𝑗+1 (𝑥) to
some variable 𝑥 into a single assignment𝜓𝑠

(
ℎ 𝑗 (𝑥), ℎ 𝑗+1 (𝑥)

)
, we will need to preserve the partial

assignment 𝜌 , if it is defined on 𝑥 . This is why we need the homomorphisms 𝜓𝑠 : C2 → C to be

idempotent, so that𝜓𝑠 (𝜌 (𝑥), 𝜌 (𝑥)) = 𝜌 (𝑥).

4
Sub-additivity is satisfied by any reasonable time-complexity bound function and is used implicitly in [16].

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:16 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

Theorem (Theorem 1.1 restated). Let G be an (𝑓1, 𝑓2)-efficiently Baker class. Then, for any
𝜀 > 0 and any instance (A,C) of general-valued CSP where A is a Q≥0-valued structured with
G(A) ∈ G and C is diagonalisable, we can find a solution of value at most (1 + 𝜀) minval(A,C) in
time 𝑓1 (|A|) + 𝑓2 (𝑐 |A|) · 𝑐1/𝜀 where 𝑐 depends on C and G only.

Proof. For a structure A and an induced subgraph 𝐺 ′
of G(A), we write A[𝐺 ′] as a shorthand

for the induced substructure A[𝑉 (𝐺 ′)] of A.
Since C is diagonalisable, there is a sequence𝜓1, . . . ,𝜓ℓ of adjacent idempotent homomorphisms

C → C from 𝜓1 = 𝜋1 to 𝜓ℓ = 𝜋2. Let 𝑀 be sufficiently large such that (1) holds for all adjacent

homomorphisms 𝜓𝑖 and 𝜓𝑖+1. For 𝜀 > 0, define 𝑟 (𝑡) B 2𝑀ℓ · ⌈ 1

𝜀
⌉ · 2

𝑡
. Let Algo be the algorithm

certifying that G is efficiently Baker and let 𝑡max be the integer that is guaranteed to exists for 𝑟 .

Our algorithm starts by using Algo to compute the vertex ordering of G(A).
We then proceed with a recursive procedure. The input of the procedure consists of an instance

A′
, a partial assignment 𝜌 from at most 𝑡max elements dom(𝜌) in A′

to C, and a state (𝐺 ′, 𝑡) of the
Baker game where 𝐺 ′

is equal to the Gaifman graph of A′ \ dom(𝜌). We describe the procedure

and claim inductively that it computes a solution of value at most 𝑒𝜀/2
𝑡

times the optimum (among

all total assignments that agree with 𝜌 on dom(𝜌)). Moreover, we claim the procedure finishes in

time at most (2|𝐶 | ·𝑀 · ⌈ 1

𝜀
⌉ · 2

𝑡max)𝑡max · 𝑓2 (|𝐺 ′ | · 2
𝑡max). Starting the recursive procedure with the

instance A, the state (G(A), 0), and empty 𝜌 , this will conclude the proof.

Let val(𝜌) be the value of constraints fully contained in dom(𝜌):

val(𝜌) B
∑︁

(𝑓 ,x) ∈tup(A)
Set(x) ⊆dom(𝜌)

𝑓 A (x) 𝑓 C (𝜌 (x)).

Since all the assignment we consider will agree with 𝜌 , val(𝜌) will be a common part of all of

them. We will not include it in the approximation we inductively claim to get; that is, we claim

the recursive procedure will output an assignment ℎ from A′
to C such that

val
𝜌 (ℎ) ≤ 𝑒𝜀/2

𝑡 · val
𝜌 (ℎ∗),

where val
𝜌 (ℎ) is a shorthand notation for val(ℎ) − val(𝜌) and ℎ∗ is an optimal solution, among

solutions that agree with 𝜌 on dom(𝜌).
In state (∅, 𝑡) for any 𝑡 , our algorithm outputs the assignment 𝜌 , which is a total assignment

since A′ \ dom(𝜌) is empty. It is trivially optimal (among assignments that agree with 𝜌).

In state (𝐺 ′, 𝑡), if Algo selects to delete the minimum vertex 𝑣 of 𝐺 ′
, we consider each possible

assignment to 𝑣 in 𝐶 , and recursively call the procedure with the state (𝐺 ′ − 𝑣, 𝑡 + 1), the instance
A′

, and the assignment 𝜌 extended to 𝑣 . We output the best solution found this way: since we

consider all possible assignments, we get a solution as close to optimum as guaranteed inductively

for 𝑡 + 1. In the final running time, the branching over all assignments to 𝑣 in 𝐶 will contribute at

most a factor of |𝐶 |𝑡max
.

If Algo selects a layering 𝜆 of 𝐺 ′
, we consider each possible shift index 𝑖 ∈ [𝑘], where 𝑘 B

(2𝑀 − 1) · ⌈ 1

𝜀
⌉ · 2

𝑡
. This branching will contribute to the final running time a factor of at most

(2𝑀 · ⌈ 1

𝜀
⌉ · 2

𝑡max)𝑡max

. For 𝑛 ∈ Z, let

𝐿𝑛 B {𝑛ℓ + 1, . . . , 𝑛ℓ + ℓ},

so 𝐿𝑛 are intervals of length ℓ which partition Z;

𝐵𝑖𝑗 B 𝐿 𝑗𝑘−𝑖 ∪ · · · ∪ 𝐿 𝑗𝑘−𝑖+𝑘 ,

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:17

so 𝐵𝑖𝑗 consists of 𝑘 + 1 such intervals, of which the last one overlaps with 𝐵𝑖𝑗+1
;

𝑂𝑖 B
⋃
𝑗

𝐵𝑖𝑗 ∩ 𝐵𝑖𝑗+1
=

⋃
𝑗

𝐿(𝑗+1)𝑘−𝑖 ,

so 𝑂𝑖
are disjoint for different 𝑖 ∈ [𝑘]. Note that we chose 𝑟 (𝑡) to satisfy |𝐵 𝑗 | = (𝑘 + 1)ℓ ≤ 𝑟 (𝑡).

For a subset of integers 𝐼 (such as 𝐵𝑖𝑗 or 𝑂
𝑖
) we henceforth abuse notation and write A′[𝐼] as

a shorthand for A′[𝜆−1 (𝐼) ∪ dom(𝜌)] and ℎ |𝐼 as a shorthand for ℎ |𝜆−1 (𝐼)∪dom(𝜌) .

Let ℎ∗ be an optimal solution to (A′,C) that agrees with 𝜌 . Since 𝑂𝑖
are disjoint for different

𝑖 ∈ [𝑘], so are the constraints of A′[𝑂𝑖] (i.e. those contained in 𝜆−1 (𝑂𝑖) ∪dom(𝜌)), except for those
fully contained in dom(𝜌) (and accounted for in val(𝜌)). This implies there exists a shift index

𝑖∗ ∈ [𝑘] such that

val
𝜌

A′ [𝑂𝑖∗] (ℎ
∗ |𝑂𝑖∗) ≤ 1

𝑘
val

𝜌

A′ (ℎ
∗) .

We henceforth only consider the recursion branch where this holds and skip the superscript 𝑖∗,
and write 𝐵 𝑗 = 𝐵

𝑖∗
𝑗 and 𝑂 = 𝑂𝑖∗

.

Let A+
be a 𝜎-structure with the same domain as A′

, defined by

𝑓 A
+ (x) =

{
𝑀 · 𝑓 A′ (x) if Set(x) ⊆ 𝜆−1 (𝑂) ∪ dom(𝜌)
𝑓 A

′ (x) otherwise,

so that tuples which lie within 𝜆−1 (𝑂) ∪ dom(𝜌) are amplified by a factor of𝑀 .

For each 𝑗 , we recurse into state (𝐺 ′[𝜆−1 (𝐵 𝑗)], 𝑡 + 1) computing solutions ℎ 𝑗 to (A+ [𝐵 𝑗],C)
which agree with 𝜌 and which by inductive assumption are almost optimal:

val
𝜌

A+ [𝐵 𝑗] (ℎ 𝑗) ≤ 𝑒
𝜀/2

𝑡+1 · val
𝜌

A+ [𝐵 𝑗] (ℎ
∗ |𝐵 𝑗

).

Therefore, summing over 𝑗 we get (by observing that every constraint is either fully contained in

dom(𝜌), or contained in A+ [𝐵 𝑗] for exactly one 𝑗 , or contained in A+ [𝑂])∑︁
𝑗

val
𝜌

A+ [𝐵 𝑗] (ℎ 𝑗) ≤ 𝑒
𝜀/2

𝑡+1 ·
∑︁
𝑗

val
𝜌

A+ [𝐵 𝑗] (ℎ
∗ |𝐵 𝑗

)

= 𝑒𝜀/2
𝑡+1 ·

(
val

𝜌

A′ (ℎ
∗) + (2𝑀 − 1) · val

𝜌

A′ [𝑂] (ℎ
∗ |𝑂)

)
≤ 𝑒𝜀/2

𝑡+1 · (1 + 2𝑀 − 1

𝑘
) val

𝜌

A′ (ℎ
∗)

≤ 𝑒𝜀/2
𝑡 · val

𝜌

A′ (ℎ
∗).

(the last inequality holds because we chose 𝑘 to satisfy 1 + 2𝑀−1

𝑘
≤ 1 + 𝜀

2
𝑡+1

≤ 𝑒𝜀/2
𝑡+1

).

Observe that for each 𝑥 ∈ 𝐴′
either 𝜆(𝑥) ∉ 𝑂 there is a unique 𝑗 for which 𝜆(𝑥) ∈ 𝐵 𝑗 , or 𝜆(𝑥) ∈ 𝑂

and there is a unique 𝑗 for which 𝜆(𝑥) ∈ 𝐵 𝑗 ∩ 𝐵 𝑗+1 = 𝐿(𝑗+1)𝑘−𝑖∗ . In the latter case we let 𝑠 (𝑥) denote
the unique 𝑠 ∈ {1, . . . , ℓ} for which 𝜆(𝑥) = ((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠 . Let ℎ′ : 𝐴′ → 𝐶 be defined as follows

ℎ′(𝑥) B

𝜌 (𝑥) if 𝑥 ∈ dom(𝜌)
ℎ 𝑗 (𝑥) if 𝜆(𝑥) ∈ 𝐵 𝑗 for a unique 𝑗

𝜓𝑠 (𝑥) (ℎ 𝑗 (𝑥), ℎ 𝑗+1 (𝑥)) if 𝜆(𝑥) ∈ 𝐵 𝑗 ∩ 𝐵 𝑗+1.

We claim that ℎ′ is a solution to (A′,C) satisfying val
𝜌 (ℎ′) ≤ ∑

𝑗 val
𝜌

A+ [𝐵 𝑗] (ℎ 𝑗). This will imply

val
𝜌

A′ (ℎ
′) ≤

∑︁
𝑗

val
𝜌

A+ [𝐵 𝑗] (ℎ 𝑗) ≤ 𝑒
𝜀/2

𝑡

val(ℎ∗),

concluding that ℎ′ it is the solution we seek.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

Let (𝑓 , x) ∈ tup>0
(A′). Note that since 𝜆 is a layering of 𝐺 ′ = G(A′) \ dom(𝜌), there are two

consecutive levels which contain all 𝑥𝑖 ∈ Set(x) \ dom(𝜌). Consider the three cases.
(1) If Set(x) ⊆ dom(𝜌), then for all 𝑗 ,

𝑓 C (ℎ′(x)) = 𝑓 C (𝜌 (x)) = 𝑓 C (ℎ 𝑗 (x)) .

(2) Otherwise, if Set(x) ⊈ 𝜆−1 (𝑂) ∪ dom(𝜌), then there is a unique 𝑗 such that Set(x) ⊆
𝜆−1 (𝐵 𝑗) ∪ dom(𝜌), and so ℎ′(𝑥𝑖) = ℎ 𝑗 (𝑥𝑖) for each 𝑖 (as some 𝑥𝑖 might be in the first or the

last layer of an overlap, but for those layers we have𝜓1 = 𝜋1 and𝜓ℓ = 𝜋2). Thus

𝑓 C (ℎ′(x)) = 𝑓 C (ℎ 𝑗 (x)) .

(3) Else, if Set(x) ⊆ 𝜆−1 (𝑂) ∪ dom(𝜌) (but Set(x) ⊈ dom(𝜌)), then there is a unique 𝑗 such that

Set(x) ⊆ 𝜆−1 (𝐵 𝑗 ∩ 𝐵 𝑗+1) ∪ dom(𝜌)

and there is some 𝑠 such that

Set(x) \ dom(𝜌) ⊆ 𝜆−1
({
((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠, ((𝑗 + 1)𝑘 − 𝑖∗)ℓ + 𝑠 + 1

})
.

Thus

ℎ′(𝑥𝑖) ∈ {𝜓𝑠 (ℎ 𝑗 (𝑥𝑖), ℎ 𝑗+1 (𝑥𝑖)), 𝜓𝑠+1 (ℎ 𝑗 (𝑥𝑖), ℎ 𝑗+1 (𝑥𝑖))}

for each 𝑥𝑖 ∈ Set(x) \ dom(𝜌). Moreover, since 𝜓𝑠 is idempotent, we can also write for

𝑥𝑖 ∈ dom(𝜌) that

ℎ′(𝑥𝑖) = 𝜌 (𝑥𝑖) = 𝜓𝑠 (𝜌 (𝑥𝑖), 𝜌 (𝑥𝑖)) = 𝜓𝑠 (ℎ 𝑗 (𝑥𝑖), ℎ 𝑗+1 (𝑥𝑖)) .

Therefore, as𝜓𝑡 and𝜓𝑡+1 are adjacent, we have by definition of adjacency that

𝑓 C (ℎ′(x)) ≤ 𝑀 · 𝑓 C2 (ℎ 𝑗 (x), ℎ 𝑗+1 (x)) = 𝑀 · (𝑓 C (ℎ 𝑗 (x)) + 𝑓 C (ℎ 𝑗+1 (x))).

This concludes the proof that val
𝜌

A′ (ℎ
′) ≤ ∑

𝑗 val
𝜌

A+ [𝐵 𝑗] (ℎ 𝑗) and hence ℎ′ is the solution we seek.

To check the running time, observe that every vertex of 𝐺 ′
is contained in 𝜆−1 (𝐵 𝑗) for at most

two 𝑗 . Hence the total size of graphs𝐺 ′[𝜆−1 (𝐵 𝑗)] is at most 2|𝐺 ′ |. Since 𝑓2 is sub-additive, the total
time required to consider those graphs in this recursive call and all sub-calls contributes a factor

of at most 𝑓2 (2𝑡max |𝐺 ′ |). □

5 MAXIMISATION
To present our algorithm for maximisation, we first define what it means for two left-hand side

structures A,B to be “close”, in a sense relevant to approximately solving Max-Sol. We then show

that there is a dual view which allows to certify “closeness” by a fairly concrete mapping: a

distribution of partial homomorphisms. This is then used to show that values given by Sherali-

Adams linear programming relaxations of Max-Sol instances onA and on B are also close. Since the

level-𝑘 Sherali-Adams relaxation solves the problem exactly on instances of treewidth O(𝑘), it gives
a PTAS for classes of structures that are “close” to bounded treewidth, as formalised by the notion

of “strong pliability” below. The proofs are similar to those in [44]; the main new contribution

is finding a suitable “dual” definition (a distribution of partial homomorphisms) that makes the

proofs work in the Max-Sol setting. We remark we were unable to find an analogue for the Min-Sol

setting.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:19

5.1 Pliability
Definition 5.1. For two left-hand side 𝜎-structures A,B, we say A strongly overcasts B, denoted
A ⪰ B, if for all Max-Sol 𝜎-structures C, maxval(A,C) ≥ maxval(B,C).

In contrast, [44] defined (weak) overcasting in terms of Q≥0-valued structures C only, instead of

the wider class of Max-Sol structures. The “strong” qualifier is only to avoid confusion with [44]:

we will not consider weak overcasts in this paper, nor analogous weak variants of the definitions

given below.

Definition 5.2. The strong opt-distance between two left-hand side 𝜎-structures A and B is defined

as

dopt (A,B) B inf{𝜀 | A ⪰ 𝑒−𝜀B and B ⪰ 𝑒−𝜀A}.

Observation 5.3. Using the fact that maxval(𝜆A,C) = 𝜆maxval(A,C), it is an easy exercise to

see that dopt (A,B) = ∞ if exactly one of maxval(A,C),maxval(B,C) is −∞, or exactly one of them

is 0, for some Max-Sol 𝜎-structure C; otherwise

dopt (A,B) = sup{𝜀 | A ̸⪰ 𝑒−𝜀B or B ̸⪰ 𝑒−𝜀A} = sup

C

|ln maxval(A,C) − ln maxval(B,C) |.

where the latter supremum is over all Max-Sol 𝜎-structures C such that neither is −∞ nor 0. It

follows that dopt is symmetric and satisfies the triangle inequality.

The only graph parameter p we consider in this paper will be treewidth, tw. Just as in [44], one

can prove that treedepth, or the Hadwiger number, give rise to equivalent definitions.

Definition 5.4. For a graph parameter p, a class of Q≥0-valued structures A is strongly p-pliable
(with rate 𝑘 (𝜀)) if for all 𝜀 > 0 there exists 𝑘 = 𝑘 (𝜀) such that for every 𝜎-structure A ∈ A there

exists a Q≥0-valued 𝜎-structure B with p(B) ≤ 𝑘 and dopt (A,B) ≤ 𝜀.

5.2 Duality
Definition 5.5 (partial functions and homomorphisms). For a partial function 𝑔 : 𝐴 → 𝐵 and

a tuple x ∈ 𝐴𝑛
, 𝑔(x) is defined as (𝑔(𝑥1), . . . , 𝑔(𝑥𝑛)) ∈ 𝐵𝑛 if all coordinates are defined, and is

undefined otherwise. For y ∈ 𝐵𝑛 , we define 𝑔−1 (y) B {x ∈ 𝐴𝑛 | 𝑔(x) is defined and equal to y}.
For left-hand side 𝜎-structures A,B, a partial homomorphism from A to B is a partial function

𝑔 : 𝐴 → 𝐵 such that: for any positive tuple (𝑓 , x) ∈ tup>0
(A), there is a positive tuple (𝑓 , y) ∈

tup>0
(B) such that𝑦𝑖 = 𝑔(𝑥𝑖) whenever𝑔(𝑥𝑖) is defined (and𝑦𝑖 is arbitrary otherwise — in particular

𝑦𝑖 ≠ 𝑦 𝑗 is allowed even if 𝑥𝑖 = 𝑥 𝑗). We denote the set of partial homomorphisms from A to B by

p-hom(A,B).

Remark 5.6. Partial homomorphisms can also be understood as follows. For a left-hand side

𝜎-structure B, let B+ be the left-hand side 𝜎-structure with domain 𝐵 ∪ {★}, where ★ is a new

element, where the value for 𝑓 ∈ 𝜎 of arity 𝑛 and an input x ∈ (𝐵 ∪ {★})𝑛 is defined as

𝑓 B
+ (x) B max

y∈𝐵𝑛

x⊑★y

𝑓 B (y).

In particular 𝑓 B
+ (x) = 𝑓 B (x) for x ∈ 𝐵𝑛 . Let Pos(A) be the relational 𝜎-structure consisting of

positive tuples of A. Then a partial homomorphism 𝑔 from A to B is the same as a homomorphism

from Pos(A) to Pos(B+) (undefined assignments are the same as assignments to ★).

Lemma 5.7. Let A,B be left-hand side 𝜎-structures. Then, the following are equivalent:
• A strongly overcasts B, i.e. for all Max-Sol 𝜎-structures C, maxval(A,C) ≥ maxval(B,C);

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

• there is a distribution of partial homomorphisms 𝜔 : p-hom(A,B) → Q≥0 (∑𝑔 𝜔 (𝑔) = 1) such
that

E

𝑔∼𝜔
𝑓 A (𝑔−1 (y)) ≥ 𝑓 B (y) for all (𝑓 , y) ∈ tup(B).

(Here 𝑓 A (𝑔−1 (y)) is a shorthand for ∑
𝑓 A (x) over all x ∈ 𝑔−1 (y), i.e. all x ∈ 𝐴ar(𝑓) such that 𝑔(x) is

defined and equal to y.)

We shall call a distribution 𝜔 from the second bullet point a strong overcast.

Proof. For one direction, suppose there is a distribution 𝜔 as in the second bullet and let C be a

Max-Sol 𝜎-structure with a bottom label 𝑐⊥. Let ℎ : 𝐵 → 𝐶 be a function achieving maxval(B,C).
For 𝑔 ∈ p-hom(A,B), let ℎ ◦⊥𝑔 : 𝐴 → 𝐶 denote the function which maps 𝑎 ∈ 𝐴 to ℎ(𝑔(𝑎)) if 𝑔(𝑎) is
defined and to 𝑐⊥ otherwise.

Therefore,

maxval(A,C) ≥ E

𝑔∼𝜔
val(ℎ ◦⊥𝑔) = E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A)

𝑓 A (x) 𝑓 C (ℎ ◦⊥𝑔(x)) . (5)

We claim the expression (5) is greater or equal to

maxval(B,C) =
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 B (y) 𝑓 C (ℎ(y)). (6)

Indeed, suppose first that (5) is −∞, or equivalently, some summand in (5) is negative. Then

there exists (𝑓 , x) ∈ tup>0
(A) and 𝑔 ∈ supp(𝜔) with 𝑓 C (ℎ ◦⊥ 𝑔(x)) = −∞. Since 𝑔 is a partial

homomorphism, by definition there exists a positive tuple y ∈ 𝐵ar(𝑓)
such that 𝑦𝑖 = 𝑔(𝑥𝑖) whenever

𝑔(𝑥𝑖) is defined. That is, 𝑓 B (y) > 0 and ℎ ◦⊥𝑔(x) ⊑⊥ ℎ(y). By the assumption that C is a Max-Sol

structure, 𝑓 C (ℎ(y)) = −∞. Since 𝑓 B (y) is positive, this gives a −∞ summand in (6) and thus the

inequality holds.

Otherwise, we can assume that every summand in (5) is non-negative. In that case

(5) = E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A)

𝑓 A (x) 𝑓 C (ℎ ◦⊥𝑔(x))

≥ E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A)
𝑔 (x) is defined

𝑓 A (x) 𝑓 C (ℎ ◦⊥𝑔(x))

= E

𝑔∼𝜔

∑︁
(𝑓 ,y) ∈tup(B)

𝑓 A (𝑔−1 (y)) 𝑓 C (ℎ(y))

=
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 C (ℎ(y)) E

𝑔∼𝜔
𝑓 A (𝑔−1 (y))

≥
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 C (ℎ(y)) 𝑓 B (y) = (6),

where after the first inequality it is still true that all summands are non-negative, and hence the last

inequality follows from the assumption about 𝜔 . This concludes the proof that maxval(A,C) ≥
maxval(B,C).

For the converse, we will use the following variant of Farkas’ Lemma [43, Lemma A.2]:

Let 𝐴 be an𝑚 × 𝑛 rational matrix and ¯𝑏 ∈ Q𝑚 . Exactly one of the following holds:
• there are 𝑥𝑖 ∈ Q≥0 (𝑖 = 1, . . . , 𝑛) such that

∑
𝑖 𝑥𝑖 = 1 and

∑
𝑖 𝐴𝑖, 𝑗𝑥𝑖 ≥ 𝑏 𝑗 for 𝑗 = 1, . . . ,𝑚;

• there are 𝑦 𝑗 ∈ Q≥0 (𝑗 = 1, . . . ,𝑚) such that
∑

𝑗 𝐴𝑖, 𝑗𝑦 𝑗 <
∑

𝑗 𝑏 𝑗𝑦 𝑗 for 𝑖 = 1, . . . , 𝑛.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:21

Suppose there is no distribution 𝜔 as in the second bullet. This means there are no numbers

𝜔 (𝑔) ∈ Q≥0 (for 𝑔 ∈ p-hom(A,B)) such that

∑
𝑔 𝜔 (𝑔) = 1 and∑︁

𝑔∈p-hom(A,B)
𝜔 (𝑔) 𝑓 A (𝑔−1 (y)) ≥ 𝑓 B (y) for all (𝑓 , y) ∈ tup(B).

Thus by Farkas’ Lemma, there are numbers 𝑐 (𝑓 , y) ∈ Q≥0 (for (𝑓 , y) ∈ tup(B)) such that∑︁
(𝑓 ,y) ∈tup(B)

𝑓 A (𝑔−1 (y)) 𝑐 (𝑓 , y) <
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 B (y)𝑐 (𝑓 , y) for all 𝑔 ∈ p-hom(A,B). (7)

Let C be the 𝜎-structure with domain 𝐵 ∪ {𝑐⊥}, where 𝑐⊥ is a new label, and with values defined

as follows for 𝑓 ∈ 𝜎 of arity 𝑛 and y ∈ 𝐶𝑛
:

𝑓 C (y) B

−∞ if ∀y′∈𝐵𝑛

: y′⊒⊥y 𝑓
B (y′) = 0

(in particular if y ∈ 𝐵𝑛 and 𝑓 B (y) = 0)

𝑐 (𝑓 , y) if y ∈ 𝐵𝑛 and 𝑓 B (y) > 0

0 otherwise; that is, if 𝑐⊥ ∈ y and ∃y′∈𝐵𝑛
: y′⊒⊥y 𝑓

B (y′) > 0.

We claim that C is a Max-Sol structure. By Definition 2.3, we need to show that for each 𝑓 ∈ 𝜎 ,
whenever 𝑓 C (y) ≥ 0, we have 𝑓 C (x) ≥ for all x ⊑⊥ y. Let 𝑓 C (y) = 𝑐 (𝑓 , y) (second case in the

definition of 𝑓 C) and x ⊑⊥ y. If x ∈ 𝐵𝑛 then 𝑓 C (𝑓 , x) = 𝑐 (𝑓 , x) and the claim holds as 𝑐 (𝑓 , x) ≥ 0.

If 𝑐⊥ ∈ y then 𝑓 C (y) = 0 and the claim holds again. Finally, if 𝑓 C (y) = 0 from the third case in

the definition of 𝑓 C, then for any x ⊑⊥ y we have 𝑓 C (x) = 0 (from the third case). To show that

maxval(A,C) < maxval(B,C), we claim that for every function 𝑔 from 𝐴 to𝐶 = 𝐵 ∪ {𝑐⊥}, we have
the following strict inequality:

val(𝑔) =
∑︁

(𝑓 ,x) ∈tup(A)
𝑓 A (x) 𝑓 C (𝑔(x)) =

∑︁
(𝑓 ,y) ∈tup(C)

𝑓 A (𝑔−1 (y)) 𝑓 C (y)

<
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 B (y) 𝑓 C (y) = val(𝜄) ≤ maxval(B,C),

where 𝜄 denotes the inclusion function from 𝐵 to 𝐶 .

Indeed, suppose first that 𝑔, as a partial function from 𝐴 to 𝐵, is not a partial homomorphism.

Then there is an (𝑓 , x) ∈ tup>0
(A) such that for all y ∈ 𝐵ar(𝑓)

with y ⊒⊥ 𝑔(x) we have 𝑓 B (y) = 0.

Thus 𝑓 C (𝑔(x)) = −∞ by definition. Thus the left-hand side of the inequality is −∞, while the

right-hand side is always non-negative.

Otherwise, we have∑︁
(𝑓 ,y) ∈tup(C)

𝑓 A (𝑔−1 (y)) 𝑓 C (y) ≤
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 A (𝑔−1 (y)) 𝑓 C (y) ≤

∑︁
(𝑓 ,y) ∈tup(B)

𝑓 A (𝑔−1 (y))𝑐 (𝑓 , y)

<
∑︁

(𝑓 ,y) ∈tup(B)
𝑓 B (y)𝑐 (𝑓 , y) =

∑︁
(𝑓 ,y) ∈tup(B)

𝑓 B (y) 𝑓 C (y).

The first inequality follows from the fact that for (𝑓 , y) ∈ tup(C) \ tup(B) we have 𝑓 C (y) ≤ 0.

The second follows from 𝑓 C (y) ≤ 𝑐 (𝑓 , y). The third, strict inequality follows from (7) since 𝑔 (as

a partial function from 𝐴 to 𝐵) is a partial homomorphism. The final equality follows from the

fact that if 𝑓 C (y) ≠ 𝑐 (𝑓 , y) for (𝑓 , y) ∈ tup(B), then 𝑓 B (y) = 0. This concludes the proof that

maxval(A,C) < maxval(B,C). □

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

max

∑︁
(𝑓 ,x) ∈tupA, 𝑠 : Set(x)→𝐶

𝜆(Set(x), 𝑠) 𝑓 A (x) 𝑓 C (𝑠 (x))

𝜆(𝑋, 𝑠) =
∑︁

𝑟 : 𝑌→𝐶, 𝑟 |𝑋 =𝑠

𝜆(𝑌, 𝑟) for 𝑋 ⊆ 𝑌 ∈
(
𝐴
≤𝑘

)
and 𝑠 : 𝑋 → 𝐶∑︁

𝑠 : 𝑋→𝐶

𝜆(𝑋, 𝑠) = 1 for 𝑋 ∈
(
𝐴
≤𝑘

)
𝜆(Set(x), 𝑠) = 0 ∀(𝑓 , x) ∈ tup(A) with 𝑓 A (x) 𝑓 C (𝑠 (x)) = −∞

𝜆(𝑋, 𝑠) ≥ 0 for 𝑋 ∈
(
𝐴
≤𝑘

)
and 𝑠 : 𝑋 → 𝐶

Fig. 3. SA𝑘 (A,C), the Sherali-Adams relaxation of level 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓) of (A,C).

5.3 PTAS
We first define the Sherali-Adams LP hierarchy [45] for Max-Sol. Let (A,C) be an instance of

Max-Sol over a signature 𝜎 and let 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓). We write

(
𝐴
≤𝑘

)
for the set of subsets of

𝐴 with at most 𝑘 elements. The Sherali-Adams relaxation of level 𝑘 [45] of (A,C) is the linear

program given in Figure 3, denoted by SA𝑘 (A,C), which has one variable 𝜆(𝑋, 𝑠) for each 𝑋 ∈
(
𝐴
≤𝑘

)
and each 𝑠 : 𝑋 → 𝐶 . We denote by maxval𝑘 (A,B) the optimum value of SA𝑘 (A,C), and define

maxval𝑘 (A,B) = −∞ if SA𝑘 (A,C) is infeasible.

Observation 5.8. Let (A,C) be an instance of Max-Sol, 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓) and 𝜆 ≥ 0. Then,

maxval(𝜆A,C) = 𝜆maxval(A,C) and maxval𝑘 (𝜆A,C) = 𝜆maxval𝑘 (A,C).

Observation 5.9. Let (A,C) be an instance of Max-Sol. Then, for any 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓), we have
that maxval𝑘 (A,C) ≥ maxval(A,C).

Proof. Letℎ : 𝐴 → 𝐶 be an optimal solution to (A,C). Consider the solution 𝜆(𝑋, 𝑠) = 1[𝑠 = ℎ |𝑋]
for SA𝑘 (A,C). It is trivially feasible and achieves the value maxval(A,C). □

The following easy result (proved in Section B) shows that an appropriate level of the Sherali-

Adams relaxation is exact for bounded treewidth.

Proposition 5.10. Let (A,C) be an instance of Max-Sol and 𝑘 ≥ tw(A). Then, maxval𝑘 (A,C) =
maxval(A,C).

Definition 5.11. Let A and B be left-hand side 𝜎-structures, and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓). We write

A ⪰𝑘 B if for all Max-Sol 𝜎-structures C we have maxval𝑘 (A,C) ≥ maxval𝑘 (B,C).

Using the dual characterisation of strong overcasts (Lemma 5.7), we can show (and prove in

Section A) the following.

Proposition 5.12. Let A and B be left-hand side 𝜎-structures, and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓). If A ⪰ B,
then A ⪰𝑘 B.

We are now ready to prove our main tractability result for maximisation problems.

Lemma 5.13. Let A be a left-hand side 𝜎-structure, 𝜀 ≥ 0 be small and 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓). Suppose
that there exists a left-hand side 𝜎-structure B such that dopt (A,B) ≤ 𝜀 and tw(B) ≤ 𝑘 . Then, for
every right-hand side 𝜎-structure C, we have that

maxval(A,C) ≤ maxval𝑘 (A,C) ≤ (1 + O(𝜀)) maxval(A,C).

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:23

Proof. By definition of dopt we have that,

A ⪯ 𝑒𝜀B ⪯ 𝑒2𝜀A,

and so

A ⪯𝑘 𝑒
𝜀B ⪯𝑘 𝑒

2𝜀A

by Proposition 5.12. From Observations 5.8 and 5.9 and Proposition 5.10 we obtain that,

maxval(A,C) ≤ maxval𝑘 (A,C) ≤ 𝑒𝜀 maxval𝑘 (B,C) = 𝑒𝜀 maxval(B,C) ≤ 𝑒2𝜀
maxval(A,C).

Finally, for 𝜀 small we have 𝑒2𝜀 = 1 + O(𝜀), completing the proof. □

Since maxval𝑘 (A,C) can be computed in time (|A| · |C|)O(𝑘)
, we obtain that any strongly tw-

pliable class of structures admits a PTAS.

Corollary 5.14. Let A be a strongly tw-pliable class of left-hand side structures. Then, the class
of Max-Sol instances (A,C) with A ∈ A admits a PTAS.
Specifically, if A is strongly tw-pliable with rate 𝑘 (𝜀), then given A ∈ A,C, and 𝜀 > 0, we can

output a value between maxval(A,C) and (1 + 𝜀) maxval(A,C) in time (|A| · |C|)O(𝑘 (Ω (𝜀))) .

In the following subsection, we show that when we look at the class of Gaifman graphs only, the

appropriate condition is fractional-treewidth-fragility.

5.4 Fragility and pliability
To give Dvořák’s definition of fractional fragility [15] we first define 𝜀-thin distributions.

Definition 5.15. Let F be a family of subsets of a set 𝑉 and 𝜀 > 0. We say a distribution 𝜋 over F
is 𝜀-thin if Pr𝑋∼𝜋 [𝑣 ∈ 𝑋] ≤ 𝜀 for all 𝑣 ∈ 𝑉 .

We now give some intuition for the next definition. Consider the treewidth as a graph parameter.

The idea of amodulator, defined below, is to remove a subset𝑋 of the vertices of a graph𝐺 to obtain

a bound on the treewidth of the new graph 𝐺 − 𝑋 . The fractional variant considers a distribution
over modulators. An alternative view of fractional-tw-fragility (obtained by LP duality [17]) is that

for any 𝜀 > 0 there is 𝑘 such that for any vertex weight function on𝐺 , a removal of a set vertices 𝑋

whose weight is an 𝜀-fraction of the total weight yields a graph 𝐺 − 𝑋 of treewidth at most 𝑘 .

Definition 5.16. For a graph parameter p and a number 𝑘 , we define a (p ≤ 𝑘)-modulator of
a graph 𝐺 to be a set 𝑋 ⊆ 𝑉 (𝐺) such that p(𝐺 − 𝑋) ≤ 𝑘 . A fractional (p ≤ 𝑘)-modulator is a
distribution 𝜋 of such modulators 𝑋 . We say that a class of graphs G is fractionally-p-fragile (with
rate 𝑘 (𝜀)) if for every 𝜀 > 0 there is a 𝑘 = 𝑘 (𝜀) such that every 𝐺 ∈ G has an 𝜀-thin fractional

(p ≤ 𝑘)-modulator.

We need some more notation. We denote the disjoint union of graphs 𝐺 and 𝐻 by 𝐺 ⊎ 𝐻 . For 𝜎

structures A1, . . . ,A𝑘 , we define the 𝜎-structure B =
⊎𝑘

𝑖=1
A𝑖 to be over the domain 𝐵 =

⊎𝑘
𝑖=1
𝐴𝑖

and by 𝑓 B (x) = 𝑓 A𝑖 (x) whenever (𝑓 , x) ∈ tup(A𝑖), and 0 otherwise.

While we are mostly interested in the following result with treewidth as the graph parameter,

we state it more generally since the proof is the same.

Lemma 5.17. Let p be a monotone5 graph parameter such that p(𝐺 ⊎𝐻) ≤ max(p(𝐺), p(𝐻)) for
all graphs 𝐺 and 𝐻 and p(𝐺) ≤ p(𝐺 − 𝑣) + 1 for all 𝑣 ∈ 𝑉 (𝐺). Let A be a class of structures with
bounded arity 𝑟 such that the class G of their Gaifman graphs is fractionally-p-fragile (with rate 𝑘 (𝜀)).
Then A is strongly p-pliable (with rate 𝑘 ′(𝜀) = 𝑘 (Ω(𝜀/𝑟)) + 1).

5
p(𝐻) ≤ p(𝐺) for all graphs𝐺 and subgraphs 𝐻 of𝐺 .

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

The proof closely follows the proof of [43, Lemma 4.6], where the same result was shown for

several particular monotone graph parameters.

Proof. Given 𝜀 > 0, A ∈ A, let 𝜋 be a fractional (p ≤ 𝑘)-modulator such that for every

𝑣 ∈ 𝑉 (𝐺),
Pr

𝑋∼𝜋
[𝑣 ∈ 𝑋] ≤ 𝜀. (8)

For each 𝑋 ⊆ 𝑉 (𝐺) = 𝐴 in the support of 𝜋 (𝜋 (𝑋) > 0), define A/𝑋 to be the 𝜎-structure obtained

by contracting 𝑋 to a single vertex and summing values. That is, let {★𝑋 } be a new element and

define 𝑔𝑋 : 𝐴 → (𝐴 − 𝑋) ∪ {★𝑋 } that maps 𝑋 to ★𝑋 and 𝐴 − 𝑋 identically. Let A/𝑋 be over the

domain (𝐴 − 𝑋) ∪ {★𝑋 } and

𝑓 A/𝑋 (y) B 𝑓 A (𝑔−1

𝑋 (y)) =
∑︁

x∈𝑔−1

𝑋
(y)
𝑓 A (x)

for each 𝑓 ∈ 𝜎 of arity 𝑛 and each y ∈ ((𝐴 − 𝑋) ∪ {★𝑋 })𝑛 .
Define B𝑋 = 𝜋 (𝑋) · A/𝑋 , and let B =

⊎
B𝑋 . By definition of 𝜋 and properties of p, we have

p(G(B𝑋)) ≤ p(G(A) − 𝑋) + 1 ≤ 𝑘 + 1, and so p(G(B)) ≤ 𝑘 + 1.

View 𝑔𝑋 as a function to 𝐵 (instead of as function to 𝐵𝑋 ⊆ 𝐵), so that 𝑔𝑋 : 𝐴 → 𝐵 is the

(total) function mapping 𝐴 − 𝑋 identically to its copy in 𝐵𝑋 and mapping 𝑋 to ★𝑋 . It is clear that

𝑔𝑋 ∈ p-hom(A,B). Define the strong overcast 𝜔 : A → B to take the value 𝑔𝑋 with probability

𝜋 (𝑋). To check this is indeed a strong overcast, observe that for (𝑓 , y) ∈ tup>0
(B), there is a unique

𝑋 such that (𝑓 , y) ∈ tup(B𝑋), hence
E

𝑔∼𝜔
𝑓 A (𝑔−1 (y)) = 𝜋 (𝑋) 𝑓 A (𝑔−1

𝑋 (y)) = 𝑓 B (y).

Define 𝑔 : 𝐵 → 𝐴 to be the partial function mapping each element of 𝐵𝑋 − {★𝑋 } identically to 𝐴,

leaving it undefined on★𝑋 . It is clear that𝑔 ∈ p-hom(B,A). Consider the overcast𝜔 ′
: B→ (1−𝑟𝜀)A

that is deterministically 𝑔. To check that 𝜔 ′
is indeed a strong overcast, let (𝑓 , x) ∈ tup(A). Then x

is covered by copies in B𝑋 for those 𝑋 that do not intersect x, hence

𝑓 B (𝑔−1 (x)) = E

𝑋∼𝜋

[
1[𝑋 ∩ x = ∅] · 𝑓 A (x)

]
= 𝑓 A (x) Pr

𝑋∼𝜋
(𝑋 ∩ x = ∅)

≥ 𝑓 A (x) · (1 − 𝑟𝜀),
where the final inequality follows by (8), the union bound, and the fact that |x| ≤ 𝑟 . Hence by

Lemma 5.7 applied to 𝜔 and 𝜔 ′
,

A ⪰ B ⪰ (1 − 𝑟𝜀)A.
By construction p(G(B)) ≤ 𝑘 +1. Thus we have shown that assuming Gaifman graphs of structures

in A are fractionally-p-fragile with rate 𝑘 (𝜀), then for every 𝜀 and for every structure A ∈ A there

is a structure B with p(G(B)) ≤ 𝑘 (𝜀) + 1 and dopt (A,B) ≤ O(𝑟𝜀). As 𝑟 is fixed, this implies that A
is strongly p-pliable (with rate 𝑘 ′(𝜀) = 𝑘 (Ω(𝜀/𝑟)) + 1). □

Remark 5.18. In the above lemma, the assumption that A contains structures of bounded arity 𝑟

can be easily lifted, at least for p = tw. This is because the maximum arity of a structure in A is

bounded by the size of the largest clique in a Gaifman graph of a structure in A. Since we assume

that the class of their Gaifman graphs is fractionally-tw-fragile with rate 𝑘 (𝜀), the largest clique
has at most 2𝑘 (1

2
) + 2 vertices (otherwise any (tw ≤ 𝑘 (1

2
))-modulator needs to contain more than

half of the clique’s vertices, and there cannot be a
1

2
-thin distribution of such modulators). Thus

without loss of generality we can assume 𝑟 ≤ 2𝑘 (1

2
) + 2.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:25

Proof of Theorem 1.2. Let G be a class of graphs that is fractionally-treewidth-fragile and let

A be a class of structures with bounded arity with Gaifman graphs in G. Since treewidth satisfies

the assumptions of Lemma 5.17, we have thatA is strongly tw-pliable. By Corollary 5.14, Max-SolG
admits a PTAS. □

If we only look at Gaifman graphs, one cannot use the presented approach to go beyond

fractionally-treewidth-fragile classes. This is because [43, Lemma 6.1] together with the above

Lemma 5.17 implies that for a class of graph G and an integer 𝑟 , if A (𝑟)
G denotes the class of all

Q≥0-valued structures of arity at most 𝑟 and whose Gaifman graphs are in G, then A (𝑟)
G is strongly

tw-pliable if and only if G fractionally-treewidth-fragile. In Section C, we give a simple example of

a class of structures (not parametrised by their Gaifman graphs) that is strongly tw-pliable but not

captured by fractional-treewidth-fragility.

ACKNOWLEDGMENTS
We would like to thank the anonymous referees of both the conference [39] and this full version

of the paper. Stanislav Živný was supported by a Royal Society University Research Fellowship.

Work mostly done while Balázs F. Mezei and Marcin Wrochna were employed at the University

of Oxford. This project has received funding from the European Research Council (ERC) under

the European Union’s Horizon 2020 research and innovation programme (grant agreement No

714532). The paper reflects only the authors’ views and not the views of the ERC or the European

Commission. The European Union is not liable for any use that may be made of the information

contained therein. This research was funded by UKRI EP/X024431/1.

A PROOF OF PROPOSITION 5.12
We closely follow the proof of [43, Proposition 5.3] but, given we are in a more general setting, we

have to be more careful.

Proof. Let C be a Max-Sol 𝜎-structure, and let 𝜔 be an overcast from A to B. Recall that for a
tuple x we denote by Set(x) the set of elements appearing in x. For a partial function 𝑔 : 𝐴 → 𝐵

and a subset 𝑋 ⊆ 𝐴, 𝑔(𝑋) denotes the set {𝑔(𝑥) | 𝑥 ∈ 𝑋 and 𝑔(𝑥) is defined}. For a function

𝑠 : 𝑔(𝑋) → 𝐶 , 𝑠 ◦⊥𝑔 denotes the function from 𝑋 to 𝐶 defined as 𝑠 (𝑔(𝑥)) when 𝑔(𝑥) is defined and

𝑐⊥ otherwise.

Let 𝜆 be an optimal solution to SA𝑘 (B,C). That is, for each subset 𝑌 of 𝐵 of size at most 𝑘 , 𝜆

describes a distribution of functions to 𝐶 using probabilities 𝜆(𝑌, 𝑠) ∈ Q≥0 for 𝑠 : 𝑌 → 𝐶 . For

fixed 𝑔 ∈ supp(𝜔), we define a solution 𝜆𝑔 to SA𝑘 (A,C) by sampling 𝑠 from this distribution and

outputting 𝑠 ◦⊥𝑔. Formally, for 𝑋 ∈
(
𝐴
≤𝑘

)
and 𝑟 : 𝑋 → 𝐶 , we define

𝜆𝑔 (𝑋, 𝑟) B
∑︁

𝑠 : 𝑔 (𝑋)→𝐶

1[𝑟 = 𝑠 ◦⊥𝑔] · 𝜆(𝑔(𝑋), 𝑠).

Note that 𝜆𝑔 is a feasible solution. Indeed, for 𝑋 ∈
(
𝐴
≤𝑘

)
the total probability is

∑︁
𝑟 : 𝑋→𝐶

𝜆𝑔 (𝑋, 𝑟) =
∑︁

𝑠 : 𝑔 (𝑋)→𝐶

(∑︁
𝑟 : 𝑋→𝐶

1[𝑟 = 𝑠 ◦⊥𝑔]
)
· 𝜆(𝑔(𝑋), 𝑠) =

∑︁
𝑠 : 𝑔 (𝑋)→𝐶

1 · 𝜆(𝑔(𝑋), 𝑠) = 1;

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

while for 𝑍 ⊆ 𝑋 ∈
(
𝐴
≤𝑘

)
and 𝑟 : 𝑍 → 𝐶 , the marginal probability of obtaining 𝑟 is

∑︁
𝑡 : 𝑋→𝐶
𝑡 |𝑍=𝑟

𝜆𝑔 (𝑋, 𝑡) =
∑︁

𝑡 : 𝑋→𝐶
𝑡 |𝑍=𝑟

∑︁
𝑠 : 𝑔 (𝑋)→𝐶

1[𝑡 = 𝑠 ◦⊥𝑔] · 𝜆(𝑔(𝑋), 𝑠)

=
∑︁

𝑠 : 𝑔 (𝑋)→𝐶

∑︁
𝑡 : 𝑋→𝐶
𝑡 |𝑍=𝑟

1[𝑡 = 𝑠 ◦⊥𝑔] · 𝜆(𝑔(𝑋), 𝑠)

=
∑︁

𝑠 : 𝑔 (𝑋)→𝐶

1[𝑟 = (𝑠 ◦⊥𝑔) |𝑍] · 𝜆(𝑔(𝑋), 𝑠)

=
∑︁

𝑠 : 𝑔 (𝑋)→𝐶

1
[
𝑟 = (𝑠 |𝑔 (𝑍)) ◦⊥𝑔

]
· 𝜆(𝑔(𝑋), 𝑠)

=
∑︁

𝑠′ : 𝑔 (𝑍)→𝐶

(
1[𝑟 = 𝑠 ′ ◦⊥𝑔]

∑︁
𝑠 : 𝑔 (𝑋)→𝐶

𝑠 |𝑔 (𝑍)=𝑠
′

𝜆(𝑔(𝑋), 𝑠)
)

=
∑︁

𝑠′ : 𝑔 (𝑍)→𝐶

1[𝑟 = 𝑠 ′ ◦⊥𝑔] · 𝜆(𝑔(𝑍), 𝑠 ′) = 𝜆𝑔 (𝑍, 𝑟).

Therefore maxval𝑘 (A,C) is at least the expected value of the solution 𝜆𝑔 with 𝑔 sampled from 𝜔 :

maxval𝑘 (A,C) ≥ E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A)
𝑟 : Set(x)→𝐶

𝜆𝑔 (Set(x), 𝑟) 𝑓 A (x) 𝑓 C (𝑟 (x))

= E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A)

𝑠 : 𝑔 (Set(x))→𝐶

𝜆(𝑔(Set(x)), 𝑠) 𝑓 A (x) 𝑓 C (𝑠 ◦⊥𝑔(x)), (9)

by definition of 𝜆𝑔. We claim the expression (9) is at least

maxval𝑘 (B,C) =
∑︁

(𝑓 ,y) ∈tup(B)
𝑠 : Set(y)→𝐶

𝜆(Set(y), 𝑠) 𝑓 B (y) 𝑓 C (𝑠 (y)) .

Indeed, suppose first that some summand in (9) is negative. Then there exist 𝑔 ∈ supp(𝜔),
(𝑓 , x) ∈ tup(A), and 𝑠 : 𝑔(Set(x)) → 𝐶 such that 𝜆(𝑔(Set(x)), 𝑠), 𝑓 A (x) > 0 and 𝑓 C (𝑠 ◦⊥𝑔(x)) = −∞.

Since 𝑔 ∈ p-hom(A,B), there is some y ∈ 𝐴ar(𝑓)
with 𝑓 B (y) > 0 such that 𝑔(𝑥𝑖) equals 𝑦𝑖 whenever

it is defined. In particular 𝑔(Set(x)) ⊆ Set(y), hence 𝜆(Set(y), 𝑠 ′) > 0 for some 𝑠 ′ : Set(y) → 𝐶

such that 𝑠 ′ |𝑔 (Set(x)) = 𝑠 . This implies 𝑠 ′(y) ⊒⊥ 𝑠 ◦⊥𝑔(x), hence 𝑓 C (𝑠 ′(y)) = −∞ by the assumption

that C is a Max-Sol structure. Therefore (A) has a summand 𝜆(Set(y), 𝑠 ′) 𝑓 B (y) 𝑓 C (𝑠 ′(y)) = −∞, so

the claimed inequality (9) ≥ (A) holds.

Otherwise, we can assume that every summand in (9) is non-negative. In that case

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:27

(9) = E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A), 𝑠 : 𝑔 (Set(x))→𝐶

𝜆(𝑔(Set(x)), 𝑠) 𝑓 A (x) 𝑓 C (𝑠 ◦⊥𝑔(x))

≥ E

𝑔∼𝜔

∑︁
(𝑓 ,x) ∈tup(A), 𝑠 : 𝑔 (Set(x))→𝐶

𝜆(𝑔(Set(x)), 𝑠) 𝑓 A (x) 𝑓 C (𝑠 ◦⊥𝑔(x)) · 1[𝑔(x) is defined]

= E

𝑔∼𝜔

∑︁
(𝑓 ,y) ∈tup(B), 𝑠 : Set(y)→𝐶

𝜆(Set(y), 𝑠) 𝑓 A (𝑔−1 (y)) 𝑓 C (𝑠 (y))

=
∑︁

(𝑓 ,y) ∈tup(B), 𝑠 : Set(y)→𝐶

𝜆(Set(y), 𝑠) E

𝑔∼𝜔

[
𝑓 A (𝑔−1 (y))

]
𝑓 C (𝑠 (y))

≥
∑︁

(𝑓 ,y) ∈tup(B), 𝑠 : Set(y)→𝐶

𝜆(Set(y), 𝑠) 𝑓 B (y) 𝑓 C (𝑠 (y)) = (𝐴),

where after the first inequality it is still true that all summands are non-negative, and hence

the last inequality follows from the fact that 𝜔 is an overcast. This concludes the proof that

maxval𝑘 (A,C) ≥ maxval𝑘 (B,C). □

B PROOF OF PROPOSITION 5.10
Proof. We reduce to [8, Theorem 5.4], which shows that bounded treewidth implies exact

solvability for minimisation of VCSPs with Q≥0 ∪ {∞}-valued right-hand side structures. We recast

our relaxation into the framework of [8], which gives a more fine-grained relaxation. The SA

relaxation in that paper is found in Figure 2. As we restrict to 𝑘 ≥ max𝑓 ∈𝜎 ar(𝑓), in this case

variables 𝜆(𝑓 , x, 𝑠) in [8, Figure 3] may be replaced by variables 𝜆(Set(x), 𝑠) by equation (SA3) and

the inclusion of the dummy function 𝜌𝑘 in 𝜎𝑘 . The linear programs are now equivalent, except

in [8] right-hand side 𝜎-structures are Q≥0 ∪ {∞}-valued, and it is cast as a minimisation problem.

Let 𝐾 B max(𝑓 ,x) ∈tup(C) 𝑓
C (x) ∈ Q≥0. Consider a new 𝜎-structure C′ defined by

𝑓 C
′ (x) = 𝐾 − 𝑓 C (x),

so that C′ is Q≥0 ∪ {∞}-valued, and thus a valued 𝜎-structure in the framework of [8].

We have,

max

∑︁
(𝑓 ,x) ∈tupA, 𝑠 : Set(x)→𝐶

𝜆(Set(x), 𝑠) 𝑓 A (x) 𝑓 C (𝑠 (x)) =

𝐾
∑︁

(𝑓 ,x) ∈tupA

𝑓 A (x) − min

∑︁
(𝑓 ,x) ∈tupA, 𝑠 : Set(x)→𝐶

𝜆(Set(x), 𝑠) 𝑓 A (x) 𝑓 C′ (𝑠 (x)) .

The left term does not depend on the LP variables 𝜆(𝑋, 𝑠). Thus SA𝑘 relaxation is exact by [8,

Theorem 5.4]. □

C MAX-CSP VS. Max-Sol ON CLIQUES
In [44], the PTAS results forMax-CSPs, with non-negative rational-valued right-hand side structures,

apply to many classes of dense structures as well. This is because the class of cliques (as a {0, 1}-
valued structures) and in fact any class of graphs with Ω(𝑛2) edges, was shown to be “tw-pliable”. In

our case, because we consider more general right-hand side structures, the definition of “overcasts”

and “tw-pliability” changed to “strong overcasts” and “strong tw-pliability” accordingly (simply by

considering all Max-Sol right-hand side structures in place of just Q≥0-valued structures). It turns

out even the simplest class of dense structures, the class of cliques, is not strongly tw-pliable.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:28 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

Proposition C.1. Let 𝜎 be the signature with one symbol 𝑓 of arity 2. Let A = {K𝑛 | 𝑛 ∈ N} be
the class of cliques, as 𝜎-structures with 𝑓 K𝑛 (𝑥,𝑦) = 1 if 𝑥 ≠ 𝑦 and 0 otherwise, for 𝑥,𝑦 ∈ [𝑛]. Then,
A is not strongly tw-pliable.

Proof. Suppose that A is strongly tw-pliable. Let 𝜀 = 1/10. There exists some 𝑘 such that for all

𝑛 there exists a structure B with tw(B) ≤ 𝑘 − 1 and dopt (K𝑛,B) ≤ 𝜀.
Let 𝑛 B 2𝑘 and B be such that tw(B) ≤ 𝑘 and dopt (K𝑛,B) ≤ 𝜀. It is an easy exercise that for

any graph 𝐺 , 𝜒 (𝐺) ≤ tw(𝐺) + 1, and therefore 𝜒 (G(B)) ≤ 𝑘 , where 𝜒 (𝐺) denotes the chromatic

number of 𝐺 .

Consider the following class of Max-Sol structures: for each 𝑖 , let C𝑖 be a 𝜎-structure over the
domain [𝑖] ∪ {𝑐⊥}, and let

𝑓 C𝑖 (𝑥,𝑦) =

−∞ if 𝑥 = 𝑦, 𝑥,𝑦 ∈ [𝑖],
0 if 𝑥 = 𝑦 = 𝑐⊥,

1 otherwise.

In other words, for a structure A the instance (A,C𝑖) asks to colour the vertices of A with 𝑖 colours

(or assign it no colour, 𝑐⊥), such that there are no monochromatic edges and the total weight

of edges with at least one endpoint coloured is maximised. Then, maxval(K𝑛,C𝑖) = 𝑖 (𝑛 − 1) for
𝑖 ≤ 𝑛. Further, for all 𝑖 ≥ 𝜒 (G(B)), maxval(B,C𝑖) = maxval(B,C𝜒 (G(B))): the optimal solution

corresponds to any proper colouring of G(B) with colours [𝑖]. As 𝑘 ≥ 𝜒 (G(B)), we have that
maxval(K𝑛,C2𝑘)/maxval(K𝑛,C𝑘) = 2, but maxval(B,C2𝑘)/maxval(B𝑛,C𝑘) = 1, contradicting

dopt (K𝑛,B) ≤ 𝜀. □

In view of Proposition C.1, one may ask whether it is possible to obtain a PTAS on cliques

via different means, not relying on our notion of strong tw-pliability. It turns ous that this is not

possible. This follows from an easy reduction from the Maximum Clique problem.

Lemma C.2 ([47, Theorem 1.1]). It is NP-hard to approximate Maximum Clique within a factor
opt

1−𝜀 for any 𝜀 > 0. That is, unless P=NP, for any 𝜀 > 0 there is no polynomial-time algorithm taking
a graph 𝐺 and an integer 𝑟 as input, that can distinguish between the following cases:

• 𝐺 has a clique of size at least 𝑟 ,
• 𝐺 has no clique of size 𝑟 𝜀 .

Proposition C.3. Let A = {K𝑛 | 𝑛 ∈ N} be the class of cliques (as defined in Proposition C.1).
Then VCSP restricted to instances (A,C) where A ∈ A and C is a Max-Sol structure, does not admit a
PTAS unless P=NP.

Proof. We reduce an instance𝐺 of Maximum Clique to a suitable VCSP instance. Given a graph

𝐺 on 𝑛 vertices, define a 𝜎-structure C over the domain 𝑉 (𝐺) ∪ {★} ∪ {𝑐⊥} as follows. Let

𝑓 C (𝑥,𝑦) =

−∞ if 𝑥,𝑦 ∈ 𝑉 (𝐺) and 𝑥𝑦 ∉ 𝐸 (𝐺), or 𝑥 = 𝑦 = ★

1 if 𝑥 = ★ and 𝑦 ∈ 𝑉 (𝐺)
0 otherwise.

It is clear that C is a Max-Sol structure, and it is easy to see that maxval(K𝑛+1,C) = Max-Clique(𝐺):
in any feasible homomorphism from K𝑛+1 to C, at most one vertex may map to each element in

𝑉 (𝐺) ∪ {★}, and vertices that are not mapped to 𝑐⊥ or ★ have to map to a clique in 𝐺 . The optimal

solution is achieved by mapping exactly one vertex to ★, one to each vertex of a maximum clique

in 𝐺 and the remaining to 𝑐⊥.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

PTAS for Sparse General-Valued CSPs 1:29

Thus by Lemma C.2, unless P=NP there is no polynomial-time algorithm for approximating

maxval(K𝑛+1,C) within any sublinear factor, let alone a constant factor approximation or a PTAS.

□

Finally, we give a simple example showing that there are strongly tw-pliable (and therefore,

by Lemma 5.13, tractable) classes of structures that are not captured by fractional-treewidth-

fragility. Note that this does not contradict our conjecture made after Theorem 1.2 in Section 1,

as the conjecture is restricted only to classes parametrised by their Gaifman graphs. The class of

structures in the following proposition does not include all possible structures over the Gaifman

graphs.

Proposition C.4. Let 𝜎 be the signature with one function symbol 𝑓 of arity 2. LetA𝑛 be 𝜎-structure
over the domain [𝑛] defined by 𝑓 A𝑛 (𝑥, 𝑥) = 1 and 𝑓 A𝑛 (𝑥,𝑦) = 1/𝑛 if 𝑥 ≠ 𝑦, 𝑥,𝑦 ∈ [𝑛]. (That is, A𝑛 is
clique with loops around each vertex, loops have weight 1, and simple edges have weight 1/𝑛.) Then,
A = {A𝑛 | 𝑛 ∈ N} is strongly tw-pliable but G(A) is not fractionally-treewidth-fragile.

Proof. First note that G(A) is the class of cliques with a loop on each vertex. As for any

(non-empty) 𝑋 ⊆ 𝑉 (𝐾𝑛) we have tw(𝐾𝑛 − 𝑋) = 𝑛 − 1 − |𝑋 |, it is easy to see that G(A) is not
fractionally-treewidth-fragile — alternatively, it follows from Proposition C.1 and Lemma 5.17 that

the class of cliques is not fractionally-treewidth-fragile, and thus neither is the class of cliques with

a loop around each vertex, i.e. G(A).
We now show that A is strongly tw-pliable. Let 𝜀 > 0 be small, 𝑘 B ⌈2/𝜀⌉ and 𝑛 > 𝑘 arbitrary.

We show that dopt (A𝑛, 𝜆A𝑘) ≤ 𝜀 where 𝜆 B 𝑛
𝑘
.

Let 𝜔 be a random map from 𝑉 (A𝑛) = [𝑛] to 𝑉 (A𝑘) = [𝑘] and we check that it is an overcast

from A𝑛 to 𝜆A𝑘 . It is clear that 𝜔 maps positive tuples to positive tuples. Further, for 𝑒 ∈ 𝐸 (A𝑘)
that is a simple edge (i.e. 𝑒 = (𝑥,𝑦) for some 𝑥 ≠ 𝑦),

E

𝑔∼𝜔
𝑓 A𝑛 (𝑔−1 (𝑒)) = 1

𝑛

(
𝑛

2

)
2

𝑘2
=
𝑛 − 1

𝑘2
= 𝜆

1

𝑘
· (1 − 1/𝑛).

For 𝑒 ∈ 𝐸 (A𝑘) that is a loop (i.e. 𝑒 = (𝑥, 𝑥) for some 𝑥),

E

𝑔∼𝜔
𝑓 A𝑛 (𝑔−1 (𝑒)) = 𝑛

𝑘
+ 1

𝑛

(
𝑛

2

)
1

𝑘2
≥ 𝜆.

As 𝑛 > 2

𝜀
, therefore A𝑛 ⪰ (1 − 𝜀)𝜆A𝑘 . By symmetry (as 𝑘 > 2

𝜀
also), 𝜆A𝑘 ⪰ (1 − 𝜀)A𝑛 . Thus,

dopt (A𝑛, 𝜆A𝑘) ≤ 𝜀 as claimed. It follows that A is strongly tw-pliable. □

REFERENCES
[1] Brenda S. Baker. 1994. Approximation Algorithms for NP-Complete Problems on Planar Graphs. J. ACM 41, 1 (1994),

153–180. https://doi.org/10.1145/174644.174650

[2] Piotr Berman and Marek Karpinski. 1999. On Some Tighter Inapproximability Results (Extended Abstract). In Proc.
26th International Colloquium on Automata, Languages and Programming (ICALP’99) (Lecture Notes in Computer Science,
Vol. 1644). Springer, 200–209. https://doi.org/10.1007/3-540-48523-6_17

[3] Hans L. Bodlaender. 1993. A Linear Time Algorithm for Finding Tree-Decompositions of Small Treewidth. In Proc. 25th
Annual ACM Symposium on Theory of Computing (STOC’93). ACM, 226–234. https://doi.org/10.1145/167088.167161

[4] Hans L. Bodlaender. 1998. A Partial 𝑘-Arboretum of Graphs with Bounded Treewidth. Theoret. Comput. Sci. 209 (1998),
1–45. https://doi.org/10.1016/S0304-3975(97)00228-4

[5] Raimundo Briceño, Andrei Bulatov, Víctor Dalmau, and Benoît Larose. 2021. Dismantlability, connectedness, and

mixing in relational structures. J. Comb. Theory, Ser. B 147 (2021), 37–70. https://doi.org/10.1016/j.jctb.2020.10.001

arXiv:1901.04398

[6] Graham R. Brightwell and Peter Winkler. 2000. Gibbs Measures and Dismantlable Graphs. J. Comb. Theory, Ser. B 78, 1

(2000), 141–166. https://doi.org/10.1006/jctb.1999.1935

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/174644.174650
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/j.jctb.2020.10.001
https://doi.org/10.1006/jctb.1999.1935

1:30 Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný

[7] Andrei A. Bulatov, Andrei A. Krokhin, and Benoît Larose. 2008. Dualities for Constraint Satisfaction Problems. In

Complexity of Constraints: An Overview of Current Research Themes (Lecture Notes in Computer Science, Vol. 5250), Nadia
Creignou, Phokion G. Kolaitis, and Heribert Vollmer (Eds.). Springer, 93–124. https://doi.org/10.1007/978-3-540-92800-

3_5

[8] Clément Carbonnel, Miguel Romero, and Stanislav Živný. 2022. The Complexity of General-Valued Constraint

Satisfaction Problems Seen from theOther Side. SIAM J. Comput. 51, 1 (2022), 19–69. https://doi.org/10.1137/19m1250121

arXiv:1710.03148

[9] Martin C. Cooper and Stanislav Živný. 2017. Hybrid Tractable Classes of Constraint Problems. In The Constraint
Satisfaction Problem: Complexity and Approximability, Andrei A. Krokhin and Stanislav Živný (Eds.). Dagstuhl Follow-

Ups, Vol. 7. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 113–135. https://doi.org/10.4230/DFU.Vol7.15301.4

[10] David P. Dailey. 1980. Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete. Discrete
Math. 30, 3 (1980), 289–293. https://doi.org/10.1016/0012-365X(80)90236-8

[11] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. 2005. Algorithmic Graph Minor Theory:

Decomposition, Approximation, and Coloring. In Proc. 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05). IEEE Computer Society, 637–646. https://doi.org/10.1109/SFCS.2005.14

[12] Matt DeVos, Guoli Ding, Bogdan Oporowski, Daniel P. Sanders, Bruce Reed, Paul Seymour, and Dirk Vertigan.

2004. Excluding any graph as a minor allows a low tree-width 2-coloring. J. Comb. Theory B 91, 1 (2004), 25–41.

https://doi.org/10.1016/j.jctb.2003.09.001

[13] Reinhard Diestel. 2010. Graph Theory (fourth ed.). Springer.

[14] Zdeněk Dvořák. [n.d.]. Personal communication. One construction is as follows: start with an arbitrarily large integer

𝑚 and for 𝑖 from𝑚 down to 1, introduce an independent set of 𝑖 new vertices and connect them via paths of length 𝑖

to all previous vertices.
[15] Zdeněk Dvořák. 2016. Sublinear separators, fragility and subexponential expansion. European J. Combin. 52 (2016),

103–119. https://doi.org/10.1016/j.ejc.2015.09.001 arXiv:1404.7219

[16] Zdeněk Dvořák. 2020. Baker game and polynomial-time approximation schemes. In Proc. 31st Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’20). SIAM, 2227–2240. https://doi.org/10.1137/1.9781611975994.137 arXiv:1901.01797

[17] Zdenek Dvořák and Jean-Sébastien Sereni. 2020. On Fractional Fragility Rates of Graph Classes. Electron. J. Comb. 27,
4 (2020), P4.9. arXiv:1907.12634 https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i4p9

[18] Peter Fulla, Hannes Uppman, and Stanislav Živný. 2019. The Complexity of Boolean Surjective General-Valued CSPs.

ACM Trans. Comput. Theory 11, 1 (2019), 4:1–4:31. https://doi.org/10.1145/3282429 arXiv:1702.04679

[19] Alexander Grigoriev and Hans L. Bodlaender. 2007. Algorithms for Graphs Embeddable with Few Crossings per Edge.

Algorithmica 49, 1 (01 9 2007), 1–11. https://doi.org/10.1007/s00453-007-0010-x

[20] Martin Grohe. 2003. Local Tree-Width, Excluded Minors, and Approximation Algorithms. Combinatorica 23, 4 (2003),
613–632. https://doi.org/10.1007/s00493-003-0037-9

[21] Martin Grohe. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the other side.

J. ACM 54, 1 (2007), 1–24. https://doi.org/10.1145/1206035.1206036

[22] Martin Grohe, Thomas Schwentick, and Luc Segoufin. 2001. When is the evaluation of conjunctive queries tractable?.

In Proc. 33rd Annual ACM Symposium on Theory of Computing (STOC’01). ACM, 657–666. https://doi.org/10.1145/

380752.380867

[23] Gregory Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. 2008. A dichotomy for minimum cost graph homomorphisms.

European J. Combin. 29, 4 (2008), 900–911. https://doi.org/10.1016/j.ejc.2007.11.012

[24] Pavol Hell, Monaldo Mastrolilli, Mayssam Mohammadi Nevisi, and Arash Rafiey. 2012. Approximation of Minimum

Cost Homomorphisms. In Proc. 20th Annual European Symposium on Algorithms (ESA12) (Lecture Notes in Computer
Science, Vol. 7501). Springer, 587–598. https://doi.org/10.1007/978-3-642-33090-2_51

[25] Pavol Hell and Arash Rafiey. 2012. The Dichotomy of Minimum Cost Homomorphism Problems for Digraphs. SIAM J.
Discrete Math 26, 4 (2012), 1597–1608. https://doi.org/10.1137/100783856

[26] Harry B. Hunt III, Madhav V. Marathe, Venkatesh Radhakrishnan, S.S Ravi, Daniel J. Rosenkrantz, and Richard E.

Stearns. 1998. NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs. J. Algorithms
26, 2 (1998), 238–274. https://doi.org/10.1006/jagm.1997.0903

[27] Peter Jeavons, Andrei A. Krokhin, and Stanislav Živný. 2014. The Complexity of Valued Constraint Satisfaction. Bull.
EATCS 113 (2014). http://eatcs.org/beatcs/index.php/beatcs/article/view/266

[28] Peter Jonsson, Andrei A. Krokhin, and Fredrik Kuivinen. 2009. Hard constraint satisfaction problems have hard gaps

at location 1. Theor. Comput. Sci. 410, 38-40 (2009), 3856–3874. https://doi.org/10.1016/j.tcs.2009.05.022

[29] Peter Jonsson, Fredrik Kuivinen, and Gustav Nordh. 2008. MAX ONES Generalized to Larger Domains. SIAM J.
Comput. 38, 1 (2008), 329–365. https://doi.org/10.1137/060669231

[30] Peter Jonsson and Gustav Nordh. 2008. Introduction to the Maximum Solution Problem. In Complexity of Constraints:
An Overview of Current Research Themes (Lecture Notes in Computer Science, Vol. 5250), Nadia Creignou, Phokion G.

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1007/978-3-540-92800-3_5
https://doi.org/10.1007/978-3-540-92800-3_5
https://doi.org/10.1137/19m1250121
https://doi.org/10.4230/DFU.Vol7.15301.4
https://doi.org/10.1016/0012-365X(80)90236-8
https://doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1016/j.jctb.2003.09.001
https://doi.org/10.1016/j.ejc.2015.09.001
https://doi.org/10.1137/1.9781611975994.137
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v27i4p9
https://doi.org/10.1145/3282429
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/s00493-003-0037-9
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/380752.380867
https://doi.org/10.1016/j.ejc.2007.11.012
https://doi.org/10.1007/978-3-642-33090-2_51
https://doi.org/10.1137/100783856
https://doi.org/10.1006/jagm.1997.0903
http://eatcs.org/beatcs/index.php/beatcs/article/view/266
https://doi.org/10.1016/j.tcs.2009.05.022
https://doi.org/10.1137/060669231

PTAS for Sparse General-Valued CSPs 1:31

Kolaitis, and Heribert Vollmer (Eds.). Springer, 255–282. https://doi.org/10.1007/978-3-540-92800-3_10

[31] Sanjeev Khanna and Rajeev Motwani. 1996. Towards a Syntactic Characterization of PTAS. In Proc. 28th Annual ACM
Symposium on the Theory of Computing (STOC’96). ACM, 329–337. https://doi.org/10.1145/237814.237979

[32] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. 2001. The Approximability of Constraint

Satisfaction Problems. SIAM J. Comput. 30, 6 (2001), 1863–1920. https://doi.org/10.1137/S0097539799349948

[33] Subhash Khot. 2002. On the power of unique 2-prover 1-round games. In Proc. 34th Annual ACM Symposium on Theory
of Computing (STOC’02). ACM, 767–775. https://doi.org/10.1145/509907.510017

[34] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Rolínek. 2017. The Complexity of General-Valued CSPs. SIAM J.
Comput. 46, 3 (2017), 1087–1110. https://doi.org/10.1137/16M1091836 arXiv:1502.07327

[35] Marcin Kozik and Joanna Ochremiak. 2015. Algebraic Properties of Valued Constraint Satisfaction Problem. In Proc.
42nd International Colloquium on Automata, Languages, and Programming (ICALP’15) (Lecture Notes in Computer
Science, Vol. 9134). Springer, 846–858. https://doi.org/10.1007/978-3-662-47672-7_69

[36] Amit Kumar, Rajsekar Manokaran, Madhur Tulsiani, and Nisheeth K Vishnoi. 2011. On LP-based approximability

for strict CSPs. In Proc. 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’11). SIAM, 1560–1573.

https://doi.org/10.1137/1.9781611973082.121

[37] KonstantinMakarychev and YuryMakarychev. 2017. Approximation Algorithms for CSPs. In The Constraint Satisfaction
Problem: Complexity and Approximability, Andrei A. Krokhin and Stanislav Živný (Eds.). Dagstuhl Follow-Ups, Vol. 7.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 287–325. https://doi.org/10.4230/DFU.Vol7.15301.11

[38] Madhav V. Marathe, Harry B. Hunt III, and Richard E. Stearns. 1997. Level-treewidth property, exact algorithms

and approximation schemes. In Proc. 29th Annual ACM Symposium on Theory of Computing (STOC’97). ACM. https:

//www.osti.gov/biblio/471394

[39] Balázs F. Mezei, Marcin Wrochna, and Stanislav Živný. 2021. PTAS for sparse general-valued CSPs. In Proc. 36th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS’21). IEEE, 1–11. https://doi.org/10.1109/LICS52264.

2021.9470599 arXiv:2012.12607

[40] Akbar Rafiey, Arash Rafiey, and Thiago Santos. 2019. Toward a Dichotomy for Approximation of H-Coloring. In Proc.
46th International Colloquium on Automata, Languages, and Programming (ICALP’19) (LIPIcs, Vol. 132). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 91:1–91:16. https://doi.org/10.4230/LIPIcs.ICALP.2019.91 arXiv:1902.02201

[41] Prasad Raghavendra. 2008. Optimal algorithms and inapproximability results for every CSP?. In Proc. 40th Annual
ACM Symposium on Theory of Computing (STOC’08). ACM, 245–254. https://doi.org/10.1145/1374376.1374414

[42] Bruce A Reed. 2003. Algorithmic aspects of tree width. In Recent advances in algorithms and combinatorics. Springer,
85–107.

[43] Miguel Romero, Marcin Wrochna, and Stanislav Živný. 2020. Treewidth-Pliability and PTAS for Max-CSPs. Technical
Report. arXiv:1911.03204

[44] Miguel Romero, Marcin Wrochna, and Stanislav Živný. 2021. Treewidth-Pliability and PTAS for Max-CSPs. In Proc.
2021 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’21). SIAM, 473–483. https://doi.org/10.1137/1.

9781611976465.29 arXiv:1911.03204

[45] Hanif D. Sherali and Warren P. Adams. 1990. A Hierarchy of Relaxations between the Continuous and Convex

Hull Representations for Zero-One Programming Problems. SIAM J. Discrete Math. 3, 3 (1990), 411–430. https:

//doi.org/10.1137/0403036

[46] Rustem Takhanov. 2010. A Dichotomy Theorem for the General Minimum Cost Homomorphism Problem. In Proc.
27th International Symposium on Theoretical Aspects of Computer Science (STACS’10) (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 657–668. https://doi.org/10.4230/LIPIcs.STACS.2010.2493

[47] David Zuckerman. 2007. Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number.

Theory Comput. 3, 1 (2007), 103–128. https://doi.org/10.4086/toc.2007.v003a006

ACM Trans. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1007/978-3-540-92800-3_10
https://doi.org/10.1145/237814.237979
https://doi.org/10.1137/S0097539799349948
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/16M1091836
https://doi.org/10.1007/978-3-662-47672-7_69
https://doi.org/10.1137/1.9781611973082.121
https://doi.org/10.4230/DFU.Vol7.15301.11
https://www.osti.gov/biblio/471394
https://www.osti.gov/biblio/471394
https://doi.org/10.1109/LICS52264.2021.9470599
https://doi.org/10.1109/LICS52264.2021.9470599
https://doi.org/10.4230/LIPIcs.ICALP.2019.91
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1137/1.9781611976465.29
https://doi.org/10.1137/1.9781611976465.29
https://doi.org/10.1137/0403036
https://doi.org/10.1137/0403036
https://doi.org/10.4230/LIPIcs.STACS.2010.2493
https://doi.org/10.4086/toc.2007.v003a006

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our results

	2 Preliminaries
	3 Minimisation on planar structures
	3.1 Diagonalisability
	3.2 PTAS

	4 Minimisation on Baker classes
	4.1 Definition of Baker classes
	4.2 PTAS

	5 Maximisation
	5.1 Pliability
	5.2 Duality
	5.3 PTAS
	5.4 Fragility and pliability

	Acknowledgments
	A Proof of Proposition 5.12
	B Proof of Proposition 5.10
	C Max-CSP vs. Max-Sol on cliques
	References

