DEPARTMENT OF COMPUTER SCIENCE

Part 1: Introduction

DEPARTMENT OF COMPUTER SCIENCE

Semantic Technology Tutorial

Part 1: Introduction

Kinds of Data in Modern Applications

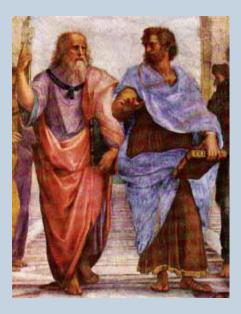
- Unstructured data:
 - Text organised in documents (sometimes multimedia files)
 - No schema for the data
 - No deep understanding of data → process data using statistic methods
 - Bag-of-words
 - Inverted index
- Relational data:
 - Structured according to a well-defined schema
 - Describes the kinds of entities and their relationships
 - Developed in advance → schema-first
 - Expected to be mostly stable
 - Data processing via queries
 - Often fixed ways of accessing data
 - Schema determines the meaning of query results
 - Schema used for optimising data access
 - Application closely depends on the schema

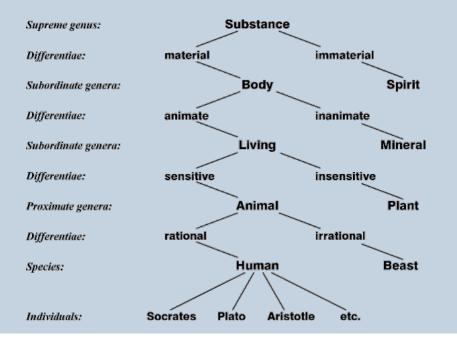
Enter Semistructured Data

- Data structure is not known (completely) in advance
- Schema is dynamic, sometimes ad hoc
- Rich structure: many different kinds of relationships
- Data processing via:
 - Querying \rightarrow as in relational model; fixed access patterns
 - Exploration \rightarrow 'ask a query and see what is returned'
- Self-explanatory models → may use data without knowing all structure
- Applications are not tightly linked to a schema

Semistructured vs. Relational Data

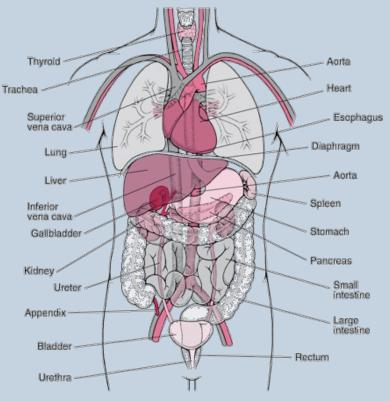
- No strict distinction→many benefits are 'soft'
- One can often:
 - Embed semistructured into relational models
 - Use relational technology to manage semistructured data
- Key 'soft' aspect: flexibility
 - Extending/modifying the schema is 'easier'
 - Ad hoc querying: systems should efficiently handle any 'reasonable' query
 - No distinction between querying schema and querying data
- Common use case: data integration
 - Flexibility needed to represent data from many sources



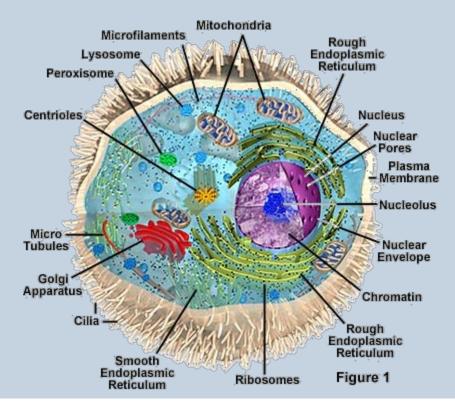


A fundamental branch of metaphysics

- Studies "being" or "existence" and their basic categories
- Aims to find out what entities and types of entities exist

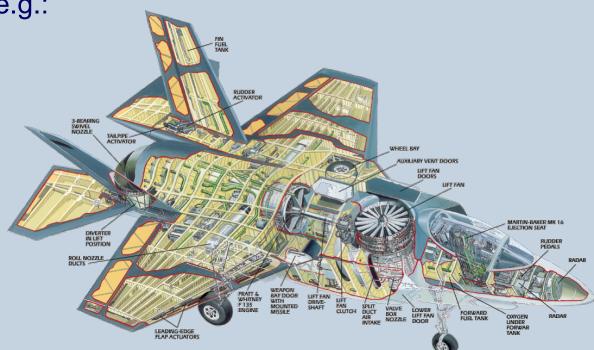


- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy

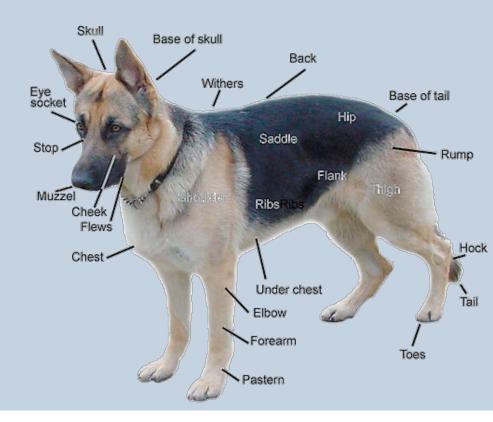


A model of (some aspect of) the world

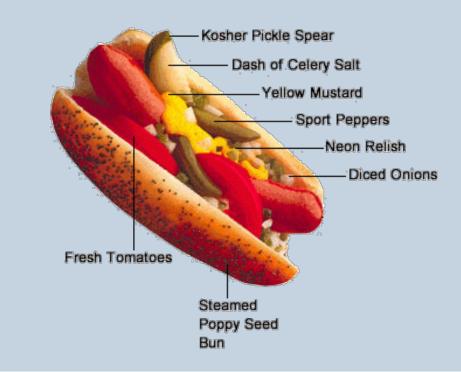
- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology



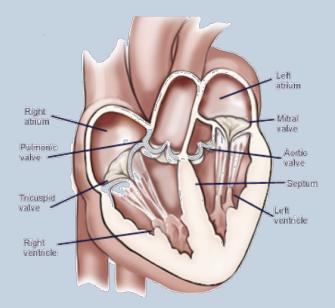
- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace



- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Dogs



- Introduces vocabulary relevant to domain, e.g.:
 - Anatomy
 - Cellular biology
 - Aerospace
 - Dogs
 - Hotdogs
 - …



A model of (some aspect of) the world

- Introduces vocabulary relevant to domain
- Specifies (relative) semantics of terms

Heart is a muscular organ that is part of the circulatory system

A model of (some aspect of) the world

- Introduces vocabulary relevant to domain
- Specifies (relative) semantics of terms

Heart is a muscular organ that is part of the circulatory system

Formalised using suitable logic

 $\begin{aligned} \forall x. [\mathsf{Heart}(x) \to \mathsf{MuscularOrgan}(x) \land \\ \exists y. [\mathsf{isPartOf}(x, y) \land \\ \mathsf{CirculatorySystem}(y)]] \end{aligned}$

Semantic Systems

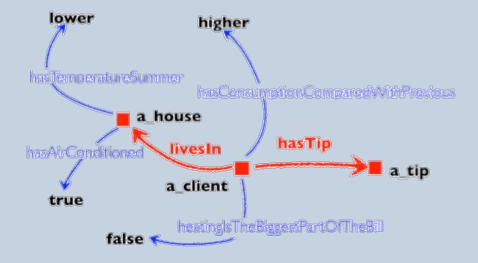
- Semantic systems are not general purpose problem solvers
- Simple 'litmus test':
 - Can the domain be described as a collection of 'truth statements'?
 - Can domain dependencies be described declaratively (e.g., using rules)?
 - Can this description be provided explicitly 'in advance'?
 - Is structured 'query answering' the main use case?
 - If all 'yes' \rightarrow use a semantic system (i.e., a 'better database')
- Examples of 'non-reasoning':
 - Information retrieval → very simple domain representation, queries are unstructured, algorithms are not declarative
 - Recommender systems \rightarrow rules are implicit in users' behaviour
 - Travel package planning → main task is not pattern matching, more related to constraint satisfaction
 - Route planning → specialised algorithms

Semantic Systems

Key components:

- (Standardised) languages:
 - RDF for data
 - OWL for ontologies
 - SPARQL for queries
- Storage and reasoning systems:
 - RDF triple stores
 - Reasoning/query-answering systems (RDFox, HermiT, ELK, ...)
- Other tools and infrastructure:
 - Ontology development environments (Protégé, Topbraid, …)
 - Other ontology services (bootstrapping, integrating, modularising, ...)
 - APIs (RDF API, OWL API)

Motivating Applications



EDF Energy Adviser

- Produce personalised energy saving advice for EDF customers
- Describe customers' situations in RDF

- Encode advice rules using an ontology
- Interpret a situation against the rules using a reasoner
- A reasoning-intensive application!

Samsung Context-Aware Mobile Services

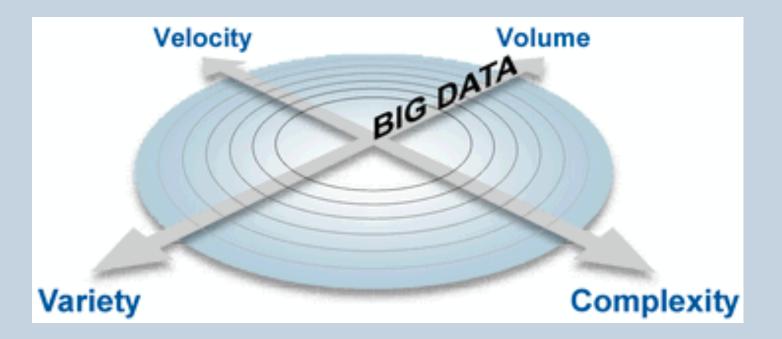
- Use sensors (WiFi, GPS, ...) to identify the context
 - E.g., 'at home', 'in a shop', 'with a friend' ...
- Adapt behaviour depending on the context
 - 'If with a friend who has birthday, remind to congratulate'
- Declaratively describe contexts and adaptations
 - Use a bunch of rules
 - E.g., 'If can see home Wifi, then context is "at home"
- Interpret all rules in real-time using reasoning
- Main benefit: declarative, rather than procedural
- Reasoning plays a central role
- Challenges:
 - Handle rapid changes in sensor readings
 - Limited computational resources

HCLS Applications

- OBO foundry includes more than 100 biological and biomedical ontologies
- BioPax "actively building OWL based clinical solutions"
 - Represents biological pathways data
 - Used in numerous databases, for visualisation, for data analysis
- SNOMED-CT (Clinical Terms) ontology
 - used in healthcare systems of more than 25 countries, including Australia, Canada, Denmark, Spain, Sweden and the UK
 - also used by major US providers, e.g., Kaiser Permanente
 - ontology provides common vocabulary for recording clinical data

Accessing (Big) Data

"a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications" (wikipedia)



Accessing (Big) Data

"a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications" (wikipedia)

Case Study: **SIEMENS** Energy Services

- Service centres responsible for remote monitoring and diagnostics of 1,000s of gas/steam turbines
- Engineers use a variety of data for visualization, diagnostics and trend detection:
 - several TB of time-stamped sensor data
 - several GB of event data
 - data grows at 30GB per day

Case Study: **SIEMENS** Energy Services

- Service centres responsible for remote monitoring and diagnostics of 1,000s of gas/steam turbines
- Engineers use a variety of data for visualization, diagnostics and trend detection:
 - several TB of time-stamped sensor data
 - several GB of event data
 - data grows at 30GB per day

Service Requests

- 1,000 requests per center per year
- 80% of time used on data gathering
- Potential saving: €50,000,000/year

Case Study: **SIEMENS** Energy Services

- Service centres responsible for remote monitoring and diagnostics of 1,000s of gas/steam turbines
- Engineers use a variety of data for visualization, diagnostics and trend detection:
 - several TB of time-stamped sensor data
 - several GB of event data
 - data grows at 30GB per day

Service Requests

- 1,000 requests per center per year
- 80% of time used on data gathering
- Potential saving: €50,000,000/year

Diagnostic Functionality

- 2–6 p/m to add new function
- New diagnostics → better exploitation of data
- Potential saving: incalculable

Case Study: **Statoil** Exploration

- Develop stratigraphic models of unexplored areas
- Geologists & geophysicists use data from previous operations in nearby locations
 - 1,000 TB of relational data
 - using diverse schemata
 - spread over 1,000s of tables
 - and multiple data bases

Case Study: **Statoil** Exploration

- Develop stratigraphic models of unexplored areas
- Geologists & geophysicists use data from previous operations in nearby locations
 - 1,000 TB of relational data
 - using diverse schemata
 - spread over 1,000s of tables
 - and multiple data bases

Data Access

- 900 geologists & geophysicists
- 30-70% of time on data gathering
- 4 day turnaround for new gueries
- Potential saving: €70,000,000/year

Case Study:

Statoil Exploration

- Develop stratigraphic models of unexplored areas
- Geologists & geophysicists use data from previous operations in nearby locations
 - 1,000 TB of relational data
 - using diverse schemata
 - spread over 1,000s of tables
 - and multiple data bases

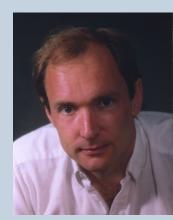
Data Access

- 900 geologists & geophysicists
- 30-70% of time on data gathering
- 4 day turnaround for new queries
- Potential saving: €70,000,000/year

Data Exploitation

- Better use of experts time
- Data analysis "most important factor" for drilling success
- Potential value: > €10bn/project

Semantic Web



According to TBL circa 1998:

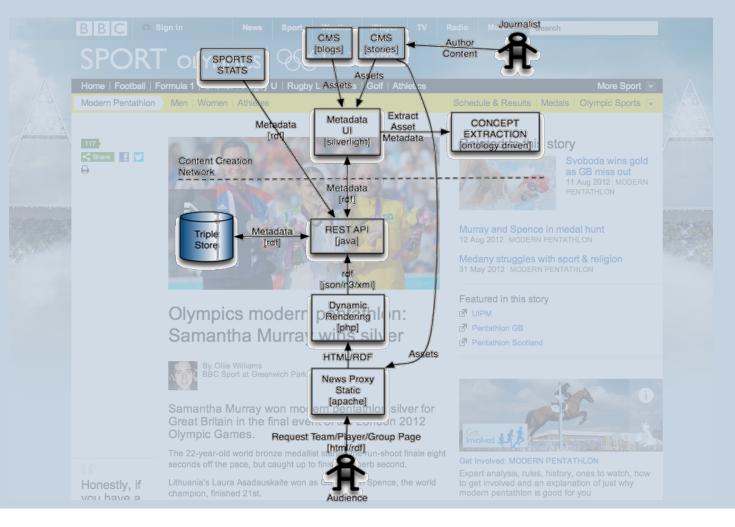
"... a **consistent logical web of data** ..." in which "... information is given **well-defined meaning** ..."

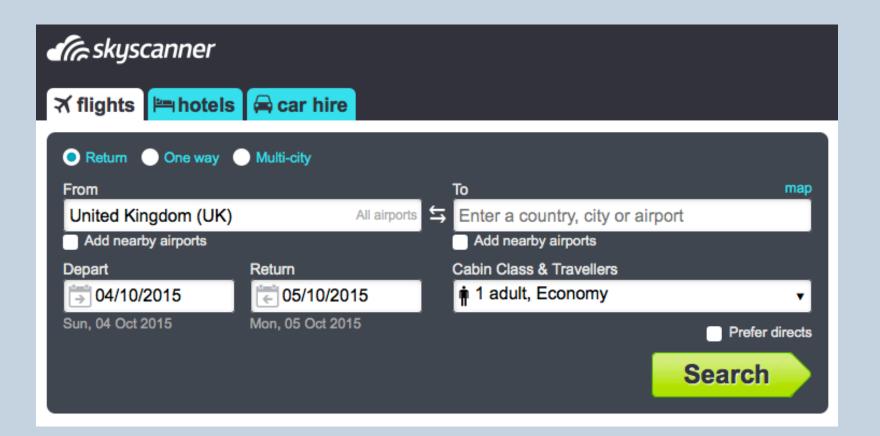
- According to **TBL** circa 1998:
 - "... a consistent logical web of data ..." in which
 - "... information is given well-defined meaning ..."
- By now has evolved into:

"a platform for distributed applications and sharing (linking) data"

- According to **TBL** circa 1998:
 - "... a consistent logical web of data ..." in which
 - "... information is given well-defined meaning ..."
- By now has evolved into:
 - "a platform for distributed applications and sharing (linking) data"
 - RDF provides uniform syntactic structure for data
 - OWL provides machine readable schemas (ontologies)
 - **SPARQL** provides standard query language

- According to **TBL** circa 1998:
 - "... a consistent logical web of data ..." in which
 - "... information is given well-defined meaning ..."
- By now has evolved into:
 - "a platform for distributed applications and sharing (linking) data"
 - RDF provides uniform syntactic structure for data
 - **OWL** provides machine readable schemas (**ontologies**)
 - **SPARQL** provides standard query language
- i.e., a large distributed ontology based information system





- Explicit KR sometimes needed, e.g., Knowledge Graph
 - Less rigorous treatment of semantics
 - Not using Semantic Web standards

- Explicit KR sometimes needed, e.g., Knowledge Graph
 - Less rigorous treatment of semantics
 - Not using Semantic Web standards
- Hiring Semantic Web people

