
Semantic Technology Tutorial

Part 2: Logical Foundations

What Is OWL?
A Description Logic (DL) with a web-friendly syntax

What Are Description Logics?

What Are Description Logics?
Decidable fragments of First Order Logic

Any questions?

Thank you for listening

Crash Course in FOL

Crash Course in (simplified) FOL
• Syntax

– Non-logical symbols (signature)
• Constants: Felix, MyMat
• Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)

– Logical symbols:
• Variables: x, y
• Operators: ^, _, !, ¬, …
• Quantifiers: 9, 8

• Equality: =

– Formulas:
•
•
•
Formula with no free variables often called a sentence

Crash Course in (simplified) FOL
• Semantics

Crash Course in (simplified) FOL
• Semantics

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the

existential phenomena they describe.

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the

existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the

existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, in order to specify, build
and test (ontology-based) tools/systems we
need to precisely define relationships (like

entailment) between logical statements – this
defines the intended behaviour of tools/systems.

Crash Course in (simplified) FOL
• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is
supposed to be an analogue of (part of) the world being modeled. FOL uses a very

simple kind of model, in which “objects” in the world (not necessarily physical objects)
are modeled as elements of a set, and relationships between objects are modeled as

sets of tuples.

Crash Course in (simplified) FOL
• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is
supposed to be an analogue of (part of) the world being modeled. FOL uses a very

simple kind of model, in which “objects” in the world (not necessarily physical objects)
are modeled as elements of a set, and relationships between objects are modeled as

sets of tuples.

Note that this is exactly the same kind of
model as used in a database: objects in the
world are modeled as values (elements) and

relationships as tables (sets of tuples).

Crash Course in (simplified) FOL
• Semantics

– Model: a pair with D a non-empty set and ·I an interpretation
•
•
•

– E.g.,

Crash Course in (simplified) FOL
• Semantics

– Evaluation: truth value in a given model M =
•
•

– E.g.,
true
false
true
true
true

true

Crash Course in (simplified) FOL
• Semantics

– Evaluation: truth value in a given model M =
•

•

E.g.,
true
false
false
true
true

Crash Course in (simplified) FOL
• Semantics

– Given a model M and a formula F, M is a model of F (written M ² F) iff
F evaluates to true in M

– A formula F is satisfiable iff there exists a model M s.t. M ² F

– A formula F entails another formula G (written F ² G) iff every model
of F is also a model of G (i.e., M ² F implies M ² G)

E.g.,

Crash Course in (simplified) FOL
• Semantics

– Given a model M and a formula F, M is a model of F (written M ² F) iff
F evaluates to true in M

– A formula F is satisfiable iff there exists a model M s.t. M ² F

– A formula F entails another formula G (written F ² G) iff every model
of F is also a model of G (i.e., M ² F implies M ² G)

E.g.,

Decidable Fragments
• FOL (satisfiability) well known to be undecidable

– A sound, complete and terminating algorithm is impossible

• Interesting decidable fragments include, e.g.,
– C2: FOL with 2 variables and Counting quantifiers

• Counting quantifiers abbreviate pairwise (in-) equalities, e.g.:
equivalent to

equivalent to

– Propositional modal and description logics
– Guarded fragment

Description Logics

What Are Description Logics?
• A family of logic based Knowledge Representation formalisms

– Originally descended from semantic networks and KL-ONE
– Describe domain in terms of concepts (aka classes), roles (aka

properties, relationships) and individuals

Cat

Animal
IS-A

has-color Black

Felix

IS-A

Mat

IS-A

sits-on

[Quillian, 1967]

What Are Description Logics?
• Modern DLs (after Baader et al) distinguished by:

– Fully fledged logics with formal semantics
• Decidable fragments of FOL (often contained in C2)
• Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment

– Computational properties well understood (worst case complexity)
– Provision of inference services

• Practical decision procedures (algorithms) for key problems
(satisfiability, subsumption, query answering, etc)

• Implemented systems (highly optimised)

• The basis for widely used ontology languages

• recommendation(s)
• Motivated by Semantic Web activity

Add meaning to web content by annotating
it with terms defined in ontologies

• Supported by tools and infrastructure
– APIs (e.g., OWL API, Thea, OWLink)
– Development environments

(e.g., Protégé, Swoop, TopBraid Composer, Neon)
– Reasoners & Information Systems

(e.g., HermiT, RDFox, FaCT++, Pellet, ELK, Ontop, …)

• Based on Description Logics (SHOIN / SROIQ)

Web Ontology Language OWL (2)

• Signature
– Concept (aka class) names, e.g., Cat, Animal, Doctor

• Equivalent to FOL unary predicates

– Role (aka property) names, e.g., sits-on, hasParent, loves
• Equivalent to FOL binary predicates

– Individual names, e.g., Felix, John, Mary, Boston, Italy
• Equivalent to FOL constants

DL Syntax

• Operators
– Many kinds available, e.g.,

• Standard FOL Boolean operators (u, t, ¬)
• Restricted form of quantifiers (9, 8)
• Counting (¸, ·, =)

• …

DL Syntax

• Concept expressions, e.g.,
– Doctor t Lawyer

– Rich u Happy

– Cat u 9sits-on.Mat

• Equivalent to FOL formulae with one free variable
–
–
–

DL Syntax

• Special concepts
– > (aka top, Thing, most general concept)
– ? (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
– (A t ¬ A) for any concept A
– (A u ¬ A) for any concept A

DL Syntax

• Role expressions, e.g.,
–

–

• Equivalent to FOL formulae with two free variables
–
–

DL Syntax

• “Schema” Axioms, e.g.,
– Rich v ¬Poor (concept inclusion)
– Cat u 9sits-on.Mat v Happy (concept inclusion)
– BlackCat Cat u 9hasColour.Black (concept equivalence)
– sits-on v touches (role inclusion)
– Trans(part-of) (transitivity)

• Equivalent to (particular form of) FOL sentence, e.g.,
– 8x.(Rich(x) ! ¬Poor(x))
– 8x.(Cat(x) ^ 9y.(sits-on(x,y) ^ Mat(y)) ! Happy(x))
– 8x.(BlackCat(x) $ (Cat(x) ^ 9y.(hasColour(x,y) ^ Black(y)))
– 8x,y.(sits-on(x,y) ! touches(x,y))
– 8x,y,z.((sits-on(x,y) ^ sits-on(y,z)) ! sits-on(x,z))

DL Syntax

• “Data” Axioms (aka Assertions or Facts), e.g.,
– BlackCat(Felix) (concept assertion)
– Mat(Mat1) (concept assertion)
– Sits-on(Felix,Mat1) (role assertion)

• Directly equivalent to FOL “ground facts”
– Formulae with no variables

DL Syntax

DL Syntax
• A set of axioms is called a TBox, e.g.:

{Doctor v Person,
Parent Person u 9hasChild.Person,
HappyParent Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

• A set of facts is called an ABox, e.g.:

{HappyParent(John),

hasChild(John,Mary)}

• A Knowledge Base (KB) is just a TBox plus an Abox
– Often written K = hT, Ai

Note
Facts sometimes written
John:HappyParent,
John hasChild Mary,
hJohn,Maryi:hasChild

The DL Family
• Many different DLs, often with “strange” names

– E.g., EL, ALC, SHIQ

• Particular DL defined by:
– Concept operators (u, t, ¬, 9, 8, etc.)
– Role operators (-, , etc.)
– Concept axioms (v, , etc.)
– Role axioms (v, Trans, etc.)

The DL Family
• E.g., EL is a well known “sub-Boolean” DL

– Concept operators: u, ¬, 9
– No role operators (only atomic roles)
– Concept axioms: v,
– No role axioms

• E.g.:

Parent Person u 9hasChild.Person

The DL Family
• ALC is the smallest propositionally closed DL

– Concept operators: u, t, ¬, 9, 8
– No role operators (only atomic roles)
– Concept axioms: v,
– No role axioms

• E.g.:

ProudParent Person u 8hasChild.(Doctor t 9hasChild.Doctor)

The DL Family
• S used for ALC extended with (role) transitivity axioms
• Additional letters indicate various extensions, e.g.:

– H for role hierarchy (e.g., hasDaughter v hasChild)
– R for role box (e.g., hasParent± hasBrother v hasUncle)
– O for nominals/singleton classes (e.g., {Italy})
– I for inverse roles (e.g., isChildOf hasChild–)
– N for number restrictions (e.g., >2hasChild, 63hasChild)
– Q for qualified number restrictions (e.g., >2hasChild.Doctor)
– F for functional number restrictions (e.g., 61hasMother)

• E.g., SHIQ = S + role hierarchy + inverse roles + QNRs

DL Naming Schemes

The DL Family
• Numerous other extensions have been investigated

– Concrete domains (numbers, strings, etc)
– DL-safe rules (Datalog-like rules)
– Fixpoints
– Role value maps
– Additional role constructors (\, [, ¬, , id, …)
– Nary (i.e., predicates with arity >2)
– Temporal
– Fuzzy
– Probabilistic
– Non-monotonic
– Higher-order
– …

DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation domain DIInterpretation function I

Individuals iI 2 DI

John
Mary

Concepts CI µ DI

Lawyer
Doctor
Vehicle

Roles rI µ DI £ DI

hasChild
owns

DL Semantics: Concepts
• Interpretation function extends to concept expressions

in the obvious(ish) way, e.g.:

DL Semantics: Concepts

DL Semantics: Axioms
• Given a model M =

–
–
–
–
–

DL Semantics: Axioms

DL Semantics: Conjunctive Queries
\bigskip\noindent

DL Semantics: Conjunctive Queries
\bigskip\noindent

DL Semantics: Conjunctive Queries
\bigskip\noindent

DL Semantics: Reasoning Problems
\bigskip\noindent

DL Semantics: Reasoning Problems
\bigskip\noindent

DL Semantics: Examples
E.g.,

– K ² John:Person ?
– K ² Peter:Doctor ?
– K ² Mary:HappyParent ?
– What if we add “Mary hasChild Jane” ?

K ² Peter = Jane
– What if we add “HappyPerson Person u 9hasChild.Doctor” ?

K ² HappyPerson v Parent

T = {Doctor v Person, Parent Person u 9hasChild.Person,
HappyParent Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild)

DL and FOL
• Most DLs are subsets of C2

– But reduction to C2 may be (highly) non-trivial
• Trans(R) naively reduces to

• Why use DL instead of C2?
– Syntax is succinct and convenient for KR applications
– Syntactic conformance guarantees being inside C2

• Even if reduction to C2 is non-obvious
– Different combinations of constructors can be selected

• To guarantee decidability
• To reduce complexity

– DL research has mapped out the decidability/complexity
landscape in great detail

• See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/

Complexity

Complexity Measures
• Taxonomic complexity

Measured w.r.t. total size of “schema” axioms

• Data complexity
Measured w.r.t. total size of “data” facts

• Query complexity
Measured w.r.t. size of query

• Combined complexity
Measured w.r.t. total size of KB (plus query if appropriate)

Complexity Classes
• LogSpace, PTime, NP, PSpace, ExpTime, etc

– worst case for a given problem w.r.t. a given parameter
– X-hard means at-least this hard (could be harder);

in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

• e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t.
combined complexity and NP-hard w.r.t. data complexity

• Note that:
– this is for the worst case, not a typical case
– complexity of problem means we can never devise a more

efficient (in the worst case) algorithm
– complexity of algorithm may, however, be even higher

(in the worst case)

DLs and Ontology Languages

• ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL
– OWL 2 based on SROIQ, i.e., ALC extended with

transitive roles, a role box nominals, inverse roles and
qualified number restrictions

• OWL 2 EL based on EL

• OWL 2 QL based on DL-Lite

• OWL 2 EL based on DLP

– OWL was based on SHOIN

• only simple role hierarchy, and
unqualified NRs

DLs and Ontology Languages

Class/Concept Constructors

Ontology Axioms

• An Ontology is usually considered to be a TBox
– but an OWL ontology is a mixed set of TBox and ABox axioms

• XSD datatypes and (in OWL 2) facets, e.g.,
– integer, string and (in OWL 2) real, float, decimal, datetime, …
– minExclusive, maxExclusive, length, …
– PropertyAssertion(hasAge Meg "17"^^xsd:integer)
– DatatypeRestriction(xsd:integer xsd:minInclusive "5"^^xsd:integer

xsd:maxExclusive "10"^^xsd:integer)

These are equivalent to (a limited form of) DL concrete domains

• Keys
– E.g., HasKey(Vehicle Country LicensePlate)

• Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules

Other OWL Features

OWL RDF/XML Exchange Syntax

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>

<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor):

• From the complexity navigator we can see that:
– OWL (aka SHOIN) is NExpTime-complete
– OWL Lite (aka SHIF) is ExpTime-complete (oops!)
– OWL 2 (aka SROIQ) is 2NExpTime-complete
– OWL 2 EL (aka EL) is PTIME-complete (robustly scalable)
– OWL 2 RL (aka DLP) is PTIME-complete (robustly scalable)

• And implementable using rule based technologies
e.g., rule-extended DBs

– OWL 2 QL (aka DL-Lite) is in AC0 w.r.t. size of data
• same as DB query answering -- nice!

Complexity/Scalability

Why (Description) Logic?
• OWL exploits results of 20+ years of DL research

– Well defined (model theoretic) semantics

Why (Description) Logic?
• OWL exploits results of 20+ years of DL research

– Well defined (model theoretic) semantics
– Formal properties well understood (complexity, decidability)

[Garey & Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.]

I can’t find an efficient algorithm, but neither can all these famous people.

Why (Description) Logic?
• OWL exploits results of 20+ years of DL research

– Well defined (model theoretic) semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms

Why (Description) Logic?
• OWL exploits results of 20+ years of DL research

– Well defined (model theoretic) semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms
– Scalability demonstrated by implemented systems

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
• Editors/development environments

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
• Editors/development environments
• Reasoners

Pellet
KAON2 CEL

Hermit

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
• Editors/development environments
• Reasoners
• Explanation,
justification
and pinpointing

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
• Editors/development environments
• Reasoners
• Explanation,
justification
and pinpointing
• Integration and
modularisation

Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
• Editors/development environments
• Reasoners
• Explanation,
justification
and pinpointing
• Integration and
modularisation
• APIs, in particular the OWL API

Ontology -v- Database

Obvious Database Analogy
• Ontology axioms analogous to DB schema

– Schema describes structure of and constraints on data

• Ontology facts analogous to DB data
– Instantiates schema
– Consistent with schema constraints

• But there are also important differences…

Obvious Database Analogy
Database:
• Closed world assumption (CWA)

– Missing information treated
as false

• Unique name assumption (UNA)
– Each individual has a single,

unique name

• Schema behaves as constraints
on structure of data

– Define legal database states

• Single canonical model
– Can check entailments (query

answers) w.r.t. this model

Ontology:
• Open world assumption (OWA)

– Missing information treated
as unknown

• No UNA
– Individuals may have more

than one name

• Ontology axioms behave like
implications (inference rules)

– Entail implicit information

• Typically multiple models
– Need to check entailment w.r.t.

all models

Database -v- Ontology
E.g., given the following ontology/schema:

HogwartsStudent Student u 9 attendsSchool.Hogwarts
HogwartsStudent v 8hasPet.(Owl or Cat or Toad)
hasPet isPetOf - (i.e., hasPet inverse of isPetOf)
9hasPet.> v Human (i.e., domain of hasPet is Human)
Phoenix v 8isPetOf.Wizard (i.e., only Wizards have Phoenix pets)
Muggle v ¬Wizard (i.e., Muggles and Wizards are disjoint)

Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
– DB: No
– Ontology: Don’t Know

OWA (didn’t say Draco was not Harry’s friend)

Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
– DB: 2
– Ontology: at least 1

No UNA (Ron and Hermione may be 2 names for same person)

Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
RonWeasley ¹ HermioneGranger

Query: How many friends does Harry Potter have?
– DB: 2
– Ontology: at least 2

OWA (Harry may have more friends we didn’t mention yet)

è

Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
RonWeasley ¹ HermioneGranger
HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger}

Query: How many friends does Harry Potter have?
– DB: 2
– Ontology: 2!

è

Database -v- Ontology
Inserting new facts/data:

Fawkes: Phoenix
Fawkes isPetOf Dumbledore

What is the response from DBMS?
– Update rejected: constraint violation

Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?
– Infer that Dumbledore is Human (domain restriction)
– Also infer that Dumbledore is a Wizard (only a Wizard can

have a pheonix as a pet)

9hasPet.> v Human
Phoenix v 8isPetOf.Wizard

DB Query Answering
• Schema plays no role

– Data must explicitly satisfy schema constraints

• Query answering amounts to model checking
– I.e., a “look-up” against the data

• Can be very efficiently implemented
– Worst case complexity is low (logspace) w.r.t. size of data

Ontology Query Answering
• Ontology axioms play a powerful and crucial role

– Answer may include implicitly derived facts
– Can answer conceptual as well as extensional queries

• E.g., Can a Muggle have a Phoenix for a pet?

• Query answering amounts to theorem proving
– I.e., logical entailment

• May have very high worst case complexity
– E.g., for OWL, NP-hard w.r.t. size of data

(upper bound is an open problem)
– Implementations may still behave well in typical cases
– Fragments/profiles may have much better complexity

Ontology Based Information Systems
• Analogous to relational database management systems

– Ontology ¼ schema; instances ¼ data

• Some important (dis)advantages
+ (Relatively) easy to maintain and update schema

• Schema plus data are integrated in a logical theory
+ Query answers reflect both schema and data
+ Can deal with incomplete information
+ Able to answer both intensional and extensional queries
– Semantics can seem counter-intuitive, particularly w.r.t. data

• Open -v- closed world; axioms -v- constraints
– Query answering (logical entailment) may be much more difficult

• Can lead to scalability problems with expressive logics

Ontology Based Information Systems
• Analogous to relational database management systems

– Ontology ¼ schema; instances ¼ data

• Some important (dis)advantages
+ (Relatively) easy to maintain and update schema

• Schema plus data are integrated in a logical theory
+ Query answers reflect both schema and data
+ Can deal with incomplete information
+ Able to answer both intensional and extensional queries
– Semantics can seem counter-intuitive, particularly w.r.t. data

• Open -v- closed world; axioms -v- constraints
– Query answering (logical entailment) may be much more difficult

• Can lead to scalability problems with expressive logics

