Semantic Technology Tutorial

Part 2: Logical Foundations



What Is OWL?

A Description Logic (DL) with a web-friendly syntax
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What Are Description Logics?
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What Are Description Logics?

Decidable fragments of First Order Logic

Thank you for listening

Any questions?
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Crash Course in FOL
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Crash Course in (simplified) FOL

°  Syntax

— Non-logical symbols (signature)
» Constants: Felix, MyMat
* Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)

— Logical symbols:
« Variables: x, y
» Operators: A, V, =, 1, ...
* Quantifiers: 3,V
« Equality: =

— Formulas:
« Cat(Felix), Mat(MyMat), sits-on(Felix, MyMat)
- Cat(z), Cat(x)V Human(z), Jy.Mat(y) A sits-on(z, y)
« Vz.Cat(z) — Animal(z), Vz.Cat(x) — (Jy.Mat(y) A sits-on(z, y))

Formula with no free variables often called a sentence
2 DBOnto -3 SIRIUS

i COMPUTER
ot SCIENCE




Crash Course in (simplified) FOL

* Semantics
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Crash Course in (simplified) FOL

* Semantics
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Crash Course in (simplified) FOL

* Semantics

[ Why should | care about semantics? -- In fact | heard that a little goes a long way! ]
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Crash Course in (simplified) FOL

* Semantics

[ Why should | care about semantics? -- In fact | heard that a little goes a long way! ]

Bl SCiENcE e DBOnto




Crash Course in (simplified) FOL

* Semantics

[ Why should | care about semantics? -- In fact | heard that a little goes a long way! J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.
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Crash Course in (simplified) FOL

* Semantics

[ Why should | care about semantics? -- In fact | heard that a little goes a long way! J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.

That's OK, but | don'’t get paid for philosophy. ]
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Crash Course in (simplified) FOL

* Semantics

[ Why should | care about semantics? -- In fact | heard that a little goes a long way! J

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the
existential phenomena they describe.

That's OK, but | don'’t get paid for philosophy. J

" Froma practical POV, in order to specify, build
and test (ontology-based) tools/systems we
need to precisely define relationships (like
entailment) between logical statements — this
\_defines the intended behaviour of tools/systems.
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Crash Course in (simplified) FOL

* Semantics

-

~

In FOL we define the semantics in terms of models (a model theory). A model is
supposed to be an analogue of (part of) the world being modeled. FOL uses a very
simple kind of model, in which “objects” in the world (not necessarily physical objects)
are modeled as elements of a set, and relationships between objects are modeled as

ts of tuples.
\_ sets of tuples )
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Crash Course in (simplified) FOL

* Semantics

-

In FOL we define the semantics in terms of models (a model theory). A model is
supposed to be an analogue of (part of) the world being modeled. FOL uses a very
simple kind of model, in which “objects” in the world (not necessarily physical objects)
are modeled as elements of a set, and relationships between objects are modeled as
sets of tuples.
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Note that this is exactly the same kind of
model as used in a database: objects in the
world are modeled as values (elements) and

relationships as tables (sets of tuples).

N o




Crash Course in (simplified) FOL

* Semantics

— Model: a pair (D, -1} with D a non-empty set and -/ an interpretation
« C! is an element of D for C a constant
« v is an element of D for v a variable
- P! is a subset of D™ for P a predicate of arity n

- E.g., D={a,b,c,d,e, f}, and

Felix! = a

Cat’ = {a, c}




Crash Course in (simplified) FOL

* Semantics

— Evaluation: truth value in a given model M = (D, ")
« P(t1,...,ty) is true iff (t£, .. 1)y e P!
« AN B is true iff A is true and B is true

—A is true ifTf A is not true

- E.g,,
Cat(Felix) true
Cat(MyMat) false
—Mat(Felix) true

sits-on(Felix, MyMat)  true
Mat(Felix) V Cat(Felix) true
Cat(Felix) V Animal(Felix) true

D ={a,b,c,d,e, f}

Felix! = a
MyMatI = b
Cat’ = {a, c}
Mat’ = {b, e}

Animal’ = {a, ¢, d}
sits-on’ = {(a, b), (c, e)}
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Crash Course in (simplified) FOL

Semantics

— Evaluation: truth value in a given model M = (D, -")

. Jx.A is true iff exists I s.t. L and I differ only w.r.t. =,

and A is true w.r.t. (D,-T)

* Vx.A is true iff for all -I, s.t. L and " differ only w.r.t. x,

A is true w.r.t. (D, -I’)

E.g.,

Jz.Cat(x) true
Vz.Cat(x) false
Jz.Cat(x) A Mat(x) false
Vz.Cat(z) — Animal(z) true

Vz.Cat(z) — (Jy.Mat(y) A sits-on(z, y)) true

D ={a,b,c,d,e, f}
Felix' = a

MyMatI = b

Cat’ = {a, c}

Mat’ = {b, e}
Animal’ = {a, ¢, d}
sits-on’ = {(a, ), (c, e)}
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Crash Course in (simplified) FOL

Semantics

— Given a model M and a formula F, M is a model of F (written M E F) iff

F evaluates to true in M

— A formula F is satisfiable iff there exists a model M s.t. MEF

— A formula F entails another formula G (written F E G) iff every model
of F is also a model of G (i.e., M E F implies M F G)

E.g.

M = Fz.Cat(x)

M [~ Vx.Cat(z)

M [~ Jx.Cat(x) A Mat(z)

M EVz.Cat(z) — Animal(z)

M = Vz.Cat(z) — (Jy.Mat(y) A sits-on(z, y))

D ={a,b,c,d,e, f}
Felix' = a

MyMatI = b

Cat’ = {a, c}

Mat’ = {b, e}
Animal’ = {a, ¢, d}
sits-on’ = {(a, ), (c, e)}




Crash Course in (simplified) FOL

v
v
v
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X
X
X
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Semantics

— Given a model M and a formula F, M is a model of F (written M E F) iff
F evaluates to true in M

— A formula F is satisfiable iff there exists a model M s.t. MEF

— A formula F entails another formula G (written F E G) iff every model
of F is also a model of G (i.e., M E F implies M F G)

E.g.,

Cat(Felix) = Jz.Cat(z) (Cat(Felix) A =3z.Cat(x) is not satisfiable)
(Vz.Cat(z) — Animal(z)) A Cat(Felix) = Animal(Felix)

(Vz.Cat(z) — Animal(z)) A =Animal(Felix) = ~Cat(Felix)

Cat(Felix) = Vz.Cat(x)

sits-on(Felix, Mat1) A sits-on(Tiddles, Mat2) = —sits-on(Felix, Mat2)
sits-on(Felix, Mat1) A sits-on(Tiddles, Mat1) = 322x sits-on(x, Mat1)
= Vz.Cat(x) — Animal(z) a tautology i
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Decidable Fragments

* FOL (satisfiability) well known to be undecidable

— A sound, complete and terminating algorithm is impossible

* Interesting decidable fragments include, e.g.,
— C2: FOL with 2 variables and Counting quantifiers (3=, 3<7)
» Counting quantifiers abbreviate pairwise (in-) equalities, e.qg.:
3232.Cat(x) equivalent to
dz,y, z.Cat(x) A Cat(y) ACat(z) NAe LyANx £z ANy # 2
3=2x.Cat(x) equivalent to
Va,y, z.Cat(x) A Cat(y) ACat(z) —x=yVae=zVy==z
— Propositional modal and description logics
— Guarded fragment
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Description Logics
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What Are Description Logics?

* A family of logic based Knowledge Representation formalisms
— Originally descended from semantic networks and KL-ONE

— Describe domain in terms of concepts (aka classes), roles (aka
properties, relationships) and individuals

has—color: @

Felix | Mat

sits-on

Animal

[Quillian, 1967]




What Are Description Logics?

* Modern DLs (after Baader et al) distinguished by:

— Fully fledged logics with formal semantics
« Decidable fragments of FOL (often contained in C,)

» Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment
— Computational properties well understood (worst case complexity)

— Provision of inference services

» Practical decision procedures (algorithms) for key problems
(satisfiability, subsumption, query answering, etc)

* Implemented systems (highly optimised)

* The basis for widely used ontology languages




Web Ontology Language OWL (2)

* W3C recommendation(s)

* Motivated by Semantic Web activity

Add meaning to web content by annotating
it with terms defined in ontologies

———

* Supported by tools and infrastructure
— APIs (e.g., OWL API, Thea, OWLink) |

— Development environments
(e.g., Protégé, Swoop, TopBraid Composer, Neon)

— Reasoners & Information Systems
(e.g., HermiT, RDFox, FaCT++, Pellet, ELK, Ontop, ...)

* Based on Description Logics (SHOIN | SROZIQ)
& pBonto &9 SIRIUS




DL Syntax

* Signature

— Concept (aka class) names, e.g., Cat, Animal, Doctor
» Equivalent to FOL unary predicates

— Role (aka property) names, e.g., sits-on, hasParent, loves
« Equivalent to FOL binary predicates

— Individual names, e.g., Felix, John, Mary, Boston, Italy

« Equivalent to FOL constants

v

A

AR,
AN
{ : H
¥
7
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DL Syntax

* QOperators

— Many kinds available, e.g.,
« Standard FOL Boolean operators (M, L, =)
» Restricted form of quantifiers (3, V)
« Counting (>, <, =)

PVA "_\;
LY 7,
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DL Syntax

* Concept expressions, e.g.,

— Doctor Ll Lawyer
— Rich M Happy
— Cat M dsits-on.Mat

* Equivalent to FOL formulae with one free variable
— Doctor(z) V Lawyer(x)
— Rich(z) A Happy(x)
— Jy.(Cat(zx) A sits-on(z, y))

o DEPARTMENT OF ';}:j‘h\
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DL Syntax

* Special concepts

— T (aka top, Thing, most general concept)

— 1 (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
— (AU - A) for any concept A
— (AN = A) for any concept A
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DL Syntax

* Role expressions, e.qg.,

— loves™

— hasParent o hasBrother

* Equivalent to FOL formulae with two free variables

— loves(y, x)

— 3Jz.(hasParent(z, z) A hasBrother(z, y))

29 SIRIUS
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DL Syntax

* “Schema” Axioms, e.g.,

— Rich E —Poor (concept inclusion)
— Cat N Jsits-on.Mat C Happy (concept inclusion)
— BlackCat = Cat N JhasColour.Black (concept equivalence)
— sits-on C touches (role inclusion)
— Trans(part-of) (transitivity)
* Equivalent to (particular form of) FOL sentence, e.g.,
— Vx.(Rich(x) = —Poor(x))

— Vx.(Cat(x) A Jy.(sits-on(x,y) A Mat(y)) = Happy(x))

— Vx.(BlackCat(x) +> (Cat(x) A dy.(hasColour(x,y) A Black(y)))
— VXx,y.(sits-on(x,y) — touches(x,y))

— VX,y,z.((sits-on(X,y) A sits-on(y,z)) — sits-on(X,z))
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DL Syntax

* “Data” Axioms (aka Assertions or Facts), e.g.,

— BlackCat(Felix) (concept assertion)
— Mat(Matl) (concept assertion)
— Sits-on(Felix,Mat1) (role assertion)

* Directly equivalent to FOL “ground facts”

— Formulae with no variables

R
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DL Syntax

* A set of axioms is called a TBox, e.g.:

{Doctor C Person,

Parent = Person 1 JdhasChild.Persg
HappyParent = Parent M VhasChilc

* A set of facts is called an AE

{HappyParent(John),
hasChild(John,Mary)}

Note
Facts sometimes written

John:HappyParent,

John hasChild Mary,
(John,Mary):hasChild

* A Knowledge Base (KB) is just a TBox plus an Abox

— Often written K = (7, A)

& DpBOnto
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The DL Family

* Many different DLs, often with “strange” names

- E.qg., &L, ALC, SHIQ
* Particular DL defined by:
— Concept operators (M, U, -, 3, V, etc.)
— Role operators (-, o, etc.)
— Concept axioms (C, =, etc.)
— Role axioms (C, Trans, etc.)

%‘: DEPARTMENT OF '
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The DL Family

° E.g., £Lis a well known “sub-Boolean” DL
— Concept operators: 1, -, 4
— No role operators (only atomic roles)
— Concept axioms: C, =
— No role axioms

° E.g.

Parent = Person M dhasChild.Person

Bl SCiENcE e DBOnto
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The DL Family

e ALC is the smallest propositionally closed DL

— Concept operators: M, LI, =, 4, V

— No role operators (only atomic roles)
— Concept axioms: C, =

— No role axioms

° E.g.

ProudParent= Person N VhasChild.(Doctor LI dhasChild.Doctor)

AR,
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The DL Family

e Sused for ALC extended with (role) transitivity axioms

* Additional letters indicate various extensions, e.g.:
— ‘H for role hierarchy (e.g., hasDaughter C hasChild)

— R for role box (e.g., hasParent &= hasBrother C hasUncle)

— (O for nominals/singleton classes (e.g., {ltaly})

— 1 forinverse roles (e.g., isChildOf =hasChild™)

— N for number restrictions (e.g., >2hasChild, <3hasChild)

— © for qualified number restrictions (e.g., >2hasChild.Doctor)
— JF for functional number restrictions (e.g., <lhasMother)

* E.g.,, SHIQ = S + role hierarchy + inverse roles + QNRs
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DL Naming Schemes

DEPARTMENT OF

COMPUTER
SCIENCE

Name Syntax Sym AL &L S
Top T v v oV
Bottom 1 v v
Conjunction cnbD v v oV
Atomic negation -A v v
Value restr. vr.C v v
Disjunction cubD Uu v
Negation -C C v
Exist. restr. Ir.C E v
Unqualified (€nr) N

number restr. (Znr)

Qualified (€nr.C) Q

number restr. (Znr.C)

Nominal {a} (@)

Inverse role T A

Role inclusion rCs H

Complex role inclusion r10...0r, Cs R

Functionality Func(r) F

Transitivity Trans(r) R+ v

N DBOnto
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The DL Family

° Numerous other extensions have been investigated
— Concrete domains (numbers, strings, etc)
— DL-safe rules (Datalog-like rules)
— Fixpoints
— Role value maps
— Additional role constructors (N, U, -, ©,1d, ...)
— Nary (i.e., predicates with arity >2)
— Temporal
— Fuzzy
— Probabilistic
— Non-monotonic
— Higher-order

PRl DEPARTMENT OF P '«E\%\‘\
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DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation function Z Interpretation domain AZ

Individuals iZ € AT

Concepts CI C AL

Vehicle ~._  ~=~.
Roles 1ZCATx AL  “~-_ "Te--a_____
hasChild T~

owns

~o
-~
-
i
e -
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DL Semantics: Concepts

* Interpretation function extends to concept expressions
in the obvious(ish) way, e.g.:

(cnD) =cInDt

(cuD) =ctup?

(—|C')I — AI\CI

{z}! = {1}

(EIRC)I={:13 | Fy.(x,y) ERI/\yEC’I}
(VR.C)t = {z | Vy.(z,y) € Rt = y € C*}
(<nRY: ={z | #{y | (z,y) € RI} n}
(>nR)t = {z | #{y | (z,y) € R*} > n}

Rl DEPARTMENT OF ,'1;\%§‘\
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DL Semantics: Concepts

Name Syntax Semantics

Top T AT

Bottom 1 0

Conjunction cnbD ctnpD*

Disjunction cubD ctuD?®

Negation -C AT\ ¢t

Exist. restr. Ir.C {de AT |3e e AT.(d,e) e rf ANe € CF}
Value restr. vr.C {de AT |Vee A*.(d,e) e rT - e C*}
Self restr. 3r.Self {d € AT | (d,d) € r*}
Unqualified (€nr) {d € AT | #{e| (d,e) e r*} < n}
number restr. (>nr) {d e AT | #{e| (d,e) €t} > n}
Qualified (€nr.0) {de AT | #{e| (d,e) er* ANe € C*} < n}
number restr. (Znr.0) {de AT | #{e| (d,e) er* ANe € C*} > n}
Nominal {a} {a®}

Role valuemap (rCs) {de AT |{e|(d,e)ert}={e|(d,¢) € s*}}
Predicate restr. 3y, ..., c. P {d € AT | (cf(d),...,cf(d)) € P°}

Role ros {(d, f) € AT x AT |Je € AT.(d,e) erT A
composition (e, f) € s*}
Inverse role r {(e,d) € AT x AT | (d,e) € *}

Feature chain g1 ---gnh (91 gah)*(d) = RE(gE (- - (97(d))--+))

colipuen " DBOnto
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DL Semantics: Axioms

* Given a model M =(D,-)

- CLCD iff ¢c!cD!

— C=D iff ¢! =D!

= C(a) iff of €C!

— R(a,b) iff (af,b!) € RY

= (7, A) iff for every axiomax € TUA, M | ax

I
T 2 R XX
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DL Semantics: Axioms

Name Syntax Semantics
General concept inclusion C C D c* c p*
Concept definition A=C AT =C*
Role inclusion rCs rt C st
Role disjointness Disj(r, s) rPnst =0
Role transitivity Trans(r) rt is transitive
Role functionality Func(r) r% is functional
Role reflexivity Ref(r) r* is reflexive
Role irreflexivity Irref(7) T is irreflexive
Role symmetry Sym(r) r% is symmetrical

Role antisymmetry

Asym(r) rT is antisymmetrical

Concept assertion

a:C at e C*

Role assertion

(a,b):7 (a*,b%) e rt

2 COMPUTER
)XFORD
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DL Semantics: Conjunctive Queries

Given sets V of variables and I of individuals, a conjunctive query
(CQ) ¢ has the form

Fuy ... Fug(ag AL A o)

where v; € V and each «; is either a concept atom C(t) or a role
atom r(t,t'), and where t,t' are terms, i.e., elements of V U 1.

The variables v, ...v,, are called quantified variables, and all other
variables in ¢ are called answer variables; we often write ¢(Z) to
denote that & are the answer variables in ¢, and we often omit the
existential quantifiers, e.g.:

q(z,2) = C(z) Ar(z,y) Ar(y, 2) A D(2)

The arity of a CQ ¢ is the number of answer variables in ¢; a CQ of

arity zero is called a Boolean CQ.
‘ 2 DBOnto <3 SIRIUS
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DL Semantics: Conjunctive Queries

Given model M = (D, ), and a CQ ¢ with answer variables v; ... v

e (ay,...,a;) is an answer to ¢ in M if {a,...,ax} C I, and we
can extend -7 to the variables in ¢ such that:

—vl=affori <1<k
— for each concept atom C(t) in ¢, we have t* € C%; and

— for each role atom r(t1,t2) in ¢ we have (t7,t%) € rZ.

e We use ans(q, M) to denote the set of all answers to g in M.

&3 SIRIUS




DL Semantics: Conjunctive Queries

Given a KB K, and a CQ ¢ with answer variables vy ... v

e (ay,...,ax) is a certain answer to q in K if:

— a1 ...ay are individuals occurring in K; and
— (a1,...,ax) € ans(q, M) for every model M of K.

e We use cert(q, K) to denote the set of all certain answers to g

in K.

e If ¢ is a Boolean CQ, then we say that K entails ¢ (written
K E q) if the empty tuple is a certain answer to ¢ in K.
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DL Semantics: Reasoning Problems

Given a knowledge base K, and concepts C, D:

e KB consistency: K is consistent if there exists some model
Mst. M EK

e Concept satisfiability: C is satisfiable w.r.t. K if there exists
a model M = (D, ) of K with C% # ()

e Concept subsumption: C is subsumed by D w.r.t. K, writ-
ten K = C C D, if C* C D? in every model Z of K

e Axiom entailment: An axiom A is entailed by K (written
K E A) if for every model M of K, M = A

e CQ answering: Given a KB K and a CQ ¢, compute cert(q, K)

3 DEPARTMENT OF P '«E\%\‘\
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DL Semantics: Reasoning Problems

Note that many problems are inter-reducible. For a KB K = (T, A),
concepts C, D, a role r and an individual a that does not occur in

K:
e K is consistent iff C' LI ~C is satisfiable w.r.t. K
e C is satisfiable w.r.t. K iff (T, AU {a: C}) is consistent
e CECLC DIff (T,AU{a: (CM—D)}) is not consistent
e KEa: Ciff (T, AU{a: -C}) is not consistent

e ¢ is an answer to ¢(x) = C(z) Ar(z,y) A D(y) in K iff £
a: (CM3r.D)

CQs are not in general reducible to “standard” reasoning problems,
but tree shaped CQs can be so reduced via rolling up as in the last
example above

3 DEPARTMENT OF P '«E\%\‘\
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DL Semantics: Examples

E.g.,

7= {Doctor C Person, Parent = Person M JhasChild.Person,
HappyParent = Parent M1 VhasChild.(Doctor L JhasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
Mary:—Doctor, Mary hasChild Peter, Mary:(< 1 hasChild)

NSNS S
I

— What

— K E John:Person ?
JC E Peter:Doctor ?
— K E Mary:HappyParent ?

if we add “Mary hasChild Jane ?

IC E Peter = Jane

— What

if we add “HappyPerson = Person 1 JhasChild.Doctor” ?

IC E HappyPerson C Parent

Rl  DEPARTMENT OF
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DL and FOL

* Most DLs are subsets of C2

— But reduction to C2 may be (highly) non-trivial
» Trans(R) naively reduces to Vz,y, z.R(x,y) A R(y, 2) — R(z, z)

° Why use DL instead of C27?

— Syntax is succinct and convenient for KR applications
— Syntactic conformance guarantees being inside C2
» Even if reduction to C2 is non-obvious
— Different combinations of constructors can be selected
« To guarantee decidability
* To reduce complexity

— DL research has mapped out the decidability/complexity
landscape in great detalil

« See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/
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Complexity of reasoning in Description Logics
Note: the information here is (always) incomplete and updated often

Base description logic: _Ztributive Zanguage with Complements
ALC::= L | A| -C| CaD | CvD | 3R.C | YR.C

Concept constructors:

Empty TBox
Acyclic TBox (A=C, A is a concept name; no cycles)
General TBox (CCD for arbitrary concepts C and D)

Role constructors: (trans )(reg )

~ #- functionality?: (<1 R) & /- role inverses: R~

¥ A~ (unqualified) number restrictions: (=n R), (£n R) O N - role intersection2: RNS

= @~ qualified number restrictions: (2n R.C), (£n R.C) ) U - role union: RUS

& O- nominals: {a} or {al,...,an} ("one-of" constructor) ' = - role complement: i

. - ' o - role chain (composition): RoS

' u - least fixpoint operator: uX.C _— flexive-t it | 4. px

3 RCS - role-value-maps - .d- re exwe:-.drants.l |Yg‘jcgsure :

_ f= g - agreement of functional role chains ("same-as") = -_concep iaen 'ty;l © s

rorbid : complex roles in number restrictions™

TBox is internalized in extensions of _4£(/0, see [76, Lemma 4.12], Role axioms (RBox): (ZVJ/LL-“[:
[54, p.3] # §'- Role transitivity: Trans(R) OWL 1.1

& # - Role hierarchy: RC S
=) ®- Complex role inclusions: RoOSC R, RoSC S
_ §- some additional features

You have selected the Description Logic: SHOIN

Complexity of reasoning prol:vlemssZ

Reasoning problem c¢;m|:;|exityg

Comments and references

Concept satisfiability |NExpTime-complete

extended.

e Hardness of even _42£(7/Ois proved in [76, Corollary 4.13]. In that paper, the result is formulated for
ALCQ/O, but only number restrictions of the form (<1R) are used in the proof.

o A different proof of the NExpTime-hardness for _2£(%70is given in [54] (even with 1 nominal, and role
inverses not used in number restrictions).

e Upper bound for SHO/Qis proved in [77, Corollary 6.31] with numbers coded in unary (for binary
coding, the upper bound remains an open problem for all logics in between _ZLCA70and SHO/Q).

e Important: in number restrictions, only simple roles (i.e. which are neither transitive nor have a
transitive subroles) are allowed; otherwise we gain undecidability even in SHA see [46].

e Remark: recently [47] it was observed that, in many cases, one can use transitive roles in number
restrictions - and still have a decidable logic! So the above notion of a simple role could be substantially

ABox consistency

NExpTime-complete |By reduction to concept satisfiability problem in presence of nominals shown in [69, Theorem 3.7].
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Complexity Measures

* Taxonomic complexity

Measured w.r.t. total size of “schema” axioms
* Data complexity

Measured w.r.t. total size of “data” facts
* Query complexity

Measured w.r.t. size of query

* Combined complexity

Measured w.r.t. total size of KB (plus query if appropriate)

9 SIRIUS




Complexity Classes

°* LogSpace, PTime, NP, PSpace, ExpTime, etc
— worst case for a given problem w.r.t. a given parameter

— X-hard means at-least this hard (could be harder);
in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

* e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t.
combined complexity and NP-hard w.r.t. data complexity

* Note that:

— this is for the worst case, not a typical case

— complexity of problem means we can never devise a more
efficient (in the worst case) algorithm

— complexity of algorithm may, however, be even higher
(in the worst case)
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DLs and Ontology Languages



DLs and Ontology Languages

« W3C's OWL 2 (like OWL, DAML+OIL & OIL) based on DL

— OWL 2 based on SROZO, i.e., ALC extended with

transitive roles, a role box nominals, inverse roles and
qualified number restrictions

« OWL 2 EL basedon EL

« OWL 2 QL based on DL-Lite
« OWL 2 EL based on DLP

— OWL was based on SHOIN

» only simple role hierarchy, and
unqualified NRs

= DEPARTMENT OF ”“Ei;‘) S I R I US
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Class/Concept Constructors

OWL Constructor DL Syntax Example
intersectionOf Cin...Mmcy Human 1 Male
unionOf Ciu...uCh Doctor LI Lawyer
complementOf —C' —-Male
oneOf {xz1}U...U{zn} | {JOohn} L {mary}
allValuesFrom VP.C YhasChild.Doctor
someValuesFrom dP.C dhasChild.Lawyer
maxCardinality <nP <lhasChild
minCardinality >nP >2hasChild

& pBonto &9 SIRIUS




Ontology Axioms

OWL Syntax DL Syntax | Example

subClassOf C1C Cr | HumanC Animal n Biped
equivalentClass Ci1=C> | Man =Human T Male
subPropertyOf Py C P> | hasDaughter C hasChild

equivalentProperty
transitiveProperty

Py =P, | cost=price
pt L P ancestor™ [ ancestor

OWL Syntax | DL Syntax | Example
type a:C John : Happy-Father
property (a,b) : R | (John,Mary) : has-child

* An Ontology is usually considered to be a TBox

— but an OWL ontology is a mixed set of TBox and ABox axioms

& DpBOnto @ SIRIUS
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Other OWL Features

* XSD datatypes and (in OWL 2) facets, e.g.,
— integer, string and (in OWL 2) real, float, decimal, datetime, ...
— minExclusive, maxExclusive, length, ...
— PropertyAssertion( hasAge Meg "17"*xsd:integer )

— DatatypeRestriction( xsd:integer xsd:minlInclusive "5"*xsd:integer
xsd:maxExclusive "10"*xsd:integer )

These are equivalent to (a limited form of) DL concrete domains

* Keys
— E.g., HasKey(Vehicle Country LicensePlate)

« Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules




OWL RDF/XML Exchange Syntax

E.g., Person M VhasChild.(Doctor LI dhasChild.Doctor):

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>
<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>
<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>
</owl:Restriction>
</owl:unionOf>
</owl:allvValuesFrom>
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>
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Complexity/Scalability

* From the complexity navigator we can see that:
— OWL (aka SHOTIN) is NExpTime-complete
— OWL Lite (aka SHZF) is ExpTime-complete (oops!)
— OWL 2 (aka SROIQ) is 2NExpTime-complete
— OWL 2 EL (aka &€£) is PTIME-complete (robustly scalable)
— OWL 2 RL (aka DLP) is PTIME-complete (robustly scalable)

« And implementable using rule based technologies
e.g., rule-extended DBs

— OWL 2 QL (aka DL-Lite) is in ACY w.r.t. size of data

« same as DB query answering -- nice!
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Why (Description) Logic?

* OWL exploits results of 20+ years of DL research

— Well defined (model theoretic) semantics

Constructor DL Syntax | Example FOL Syntax
intersectionOf CyN...NCy, |HumannMale |Ci(z)A...ACp(x)
unionOf CyU...uCy | DoctoruLawyer | Ci(z) V...V Cp(x)
complementOf -C -Male -C(x)

oneOf {z}U...U{zn} | {john}U{mary} |z=2z1V...Vz=12y
allValuesFrom YP.C YhasChild.Doctor | Vy.P(z,y) — C(y)
someValuesFrom 3P.C JhasChild.Lawyer | Jy.P(z,y) A C(y)
maxCardinality <nP <1hasChild ISy P(x, y)
minCardinality >nP >2hasChild 32"y P(z,y)

i COMPUTER
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Why (Description) Logic?

* OWL exploits results of 20+ years of DL research
— Well defined (model theoretic) semantics

— Formal properties well understood (complexity, decidability)

| can’t find an efficient algorithm, but neither can all these famous people.

[Garey & Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979.]
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Why (Description) Logic?

* OWL exploits results of 20+ years of DL research

— Well defined (model theoretic) semantics

— Formal properties well understood (complexity, decidability)

— Known reasoning algorithms

A COMPUTER
ety SCIENCE

DEPARTMENT OF

M-rule if 1. (C1 M C2) € L(v), v is not indirectly blocked, and
2.{C1.Ca} ¢ L(v)
then L(v) — L(v) U{Cy,Ca}.
Ll-rule if 1. (C; U Cy) € L(v), v is not indirectly blocked, and
2. {Ch.Cot N L(v) =0
then L(v) — L(v) U{E} for some E € {C,C5}
3-rule if 1. 3r.C' € L(v1), v1 is not blocked, and
2. v1 has no safe r-neighbour v2 with C' € L(v1),
then create a new node v2 and an edge {(vi,v2)
with L({v2) = {C} and L({v1,v2)) = {r}.
V-rule if 1. ¥r.C' € L(vy), vy is not indirectly blocked, and
2. there is an r-neighbour vy of vy with C' & L{vs)
then L(vs) — L(vz) U {C}.
WV, -rule if 1. ¥r.C' € L(vy), vy is not indirectly blocked, and
2. there is some role 7' with Trans(+’) and ' [ r
3. there is an r’-neighbour vy of vy with Vr'.C' ¢ L(vs)
then L(vy) — L(vy) U {¥r'.C}.
choose-rule if 1. <nr.C' € L(v1), v1 is not indirectly blocked, and
2. there is an r-neighbour v2 of vy with {C, ~C} N L(v2) =0
then L(v2) — L(v2) J {E} for some E € {C, ~C}.
=-rule if 1. Znr.C € L(v), v is not blocked, and
2. there are not n safe r-neighbours vy, . .., v, of v

withC € L(v;))and v; # v forl <i<j<n

§> DBOnto
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Why (Description) Logic?

* OWL exploits results of 20+ years of DL research
— Well defined (model theoretic) semantics

— Formal properties well understood (complexity, decidability)

— Known reasoning algorithms

— Scalability demonstrated by implemented systems




Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
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Tools, Tools,

Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments
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Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

* Reasoners

¢ Hermit FaCT++
Hacer = Pellet
=) KAON2 CEL
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Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

* Reasoners

* Explanation,
justification
and pinpointing

DEPARTMENT OF

2 COMPUTER
SCIENCE

File View Bookmarks Resource Holder Advanced About

4 >

~Address:  http://www.mindswap.org/ontologies/tambis-full.owl

A Ontology List

Add (€) Ao;[E | Add X )

( aeccar ) ( Remowe ) ( Renome )

) Show Inherited || Changes/Annotations || Editable

'OWL Ontology: tambis-full.owl

Annotations:

Ontology Info.|  Species Validation |

Root/Derived Debugging Information:

144 unsatisfiable classes:

root unsat. classes (3)

metal (141)
. ,
™ Show Imports QNames. Pellet metaliod (140)
1
la—'ﬂn | Property Tree Ust nonmetal (140)
@ owl:Thing n
» () function derived unsat. classes (141) parent dependencies
» (© mental
» @ modifier acetylation-site medification-site, protein-part,
» (C) physical active-site macromolecule-part, protein, site, protein-part
» (© process
alkali-meta nonmetal, ?, metal, metalioid
» (© structure
» (©) substance alpha-hel ~stn 1L 1! in -
€) xsd:integer _— magcromolecular-compound,
C) xsd:string amidation-site medification-site, protein-part,
v @ owl:Nothing organic-molecular-compound,
@ methylation-site amino-acid small-organic-molecular-compound,
. complement-dna . - "
anti-codon rna-part, macromolecyle-part, rna,
@ phosphorylation-site
@ geranyl-geranyl-attachment-site astatine nonmetal, ?, metal, metallokd,
@ dna-binding-site atom etal, metal, metalioid
@ aikali-metal DOOMERL
PP protein-structure, protein-secondary-structure
sl beta-sheet — r-cOm. 3
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Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

JIA1.owl (http:/, .semanti b.org/ontologies/2008/9/) I
° Reasoners T €2 Onkges Newow Tow Mewcr T View wedow tb

<G | | © A1 .0W (it e semanticweb crglontologles2008/3/A1 owd)

Active Ontology | Entties  Classes | ObjectProperties  DataProperties  Indivicusis | OWLVIZ |

* Explanation, e ———
justification g

and pinpointing L = g ———

DL Guery | ContertMap Manager

s)
Preview Logic irpact % Extract Dependency Tree ‘
(® Use pre-exiracted mappings file
Suggestion Opti
. [lev - iAkgnment TocksAOntology Tests/OLA_JA_mappings owl ® ce (Mark a3 a
° Integratlon and R A £ e e
L L]
modularisation -
Plan Extraction Opt
Threshold for Suppressible Mappngs 0.4 Select Scope for Plan Extractor.
[ Anow changes over Ontology

Alow changes over Ortology 2
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Tools, Tools, Tools

Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:

* Editors/development environments

Revision 1403 - (download) (annotate)

P R Fri Dec 18 17:14:37 2009 UTC (4 months, 2 weeks ago) by matthewhorridge
easoners File size: 4711 byte(s)
1 |[package org.coode.owlapi.examples;
2
. 3 |import org.semanticweb.owlapi.apibinding.OWLManager;
o 4 |import org.semant{lcweb.owlapJ:..moc_iel.*; .
Xp ana Ion, 2 i/?port org.semanticweb.owlapi.util.DefaultPrefixManager;
. n gen . 7 | * Copyright (C) 2009, University of Manchester
g | *
JUStlfl Catlon 9 | * Modifications to the initial code base are copyright of their
10 | * respective authors, or their employers as appropriate. Authorship
. . = 11 | * of the modifications may be determined from the ChangeLog placed at
an Inoointin 12 | + the ond of this file.
13 | *
14 | * This library is free software; you can redistribute it and/or
15 | * modify it under the terms of the GNU Lesser General Public
° . 16 | * License as published by the Free Software Foundation; either
17 | * version 2.1 of the License, or (at your option) any later version.
Integration and ¥ ¢ o (at your option) any
19 * This library is distributed in the hope that it will be useful,
- - 20 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
n |O u arlsa Ion 21 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

22

* Lesser General Public License for more details.

* APIs, in particular the OWL API
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Ontology -v- Database



Obvious Database Analogy

* Ontology axioms analogous to DB schema

— Schema describes structure of and constraints on data

* Ontology facts analogous to DB data
— Instantiates schema

— Consistent with schema constraints

* But there are also important differences...




Obvious Database Analogy

Database:

Closed world assumption (CWA)

— Missing information treated
as false

Unique name assumption (UNA)

— Each individual has a single,
unique name

Schema behaves as constraints
on structure of data

— Define legal database states
Single canonical model

— Can check entailments (query
answers) w.r.t. this model

i COMPUTER
ot SCIENCE

Ontology:

& DpBOnto

Open world assumption (OWA)

— Missing information treated
as unknown

No UNA

— Individuals may have more
than one name

Ontology axioms behave like
implications (inference rules)

— Entail implicit information

Typically multiple models

— Need to check entailment w.r.t.
all models

&9 SIRIUS




Database -v- Ontology

E.g., given the following ontology/schema:

HogwartsStudent = Student M 3 attendsSchool. Hogwarts
HogwartsStudent C VhasPet.(Owl or Cat or Toad)

hasPet =isPetOf - (i.e., hasPet inverse of isPetOf)
dJhasPet. T C Human (i.e., domain of hasPet is Human)
Phoenix C VisPetOf.Wizard  (i.e., only Wizards have Phoenix pets)
Muggle C ~Wizard (i.e., Muggles and Wizards are disjoint)
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Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
— DB: No
— Ontology: Don’t Know
OWA (didn’t say Draco was not Harry’s friend)
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Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
— DB: 2
— Ontology: at least 1

No UNA (Ron and Hermione may be 2 names for same person)
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Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

=» RonWeasley # HermioneGranger

Query: How many friends does Harry Potter have?
— DB: 2
— Ontology: at least 2

OWA (Harry may have more friends we didn’t mention yet)
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Database -v- Ontology

And the following facts/data:

HarryPotter: Wizard

DracoMalfoy: Wizard

HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

RonWeasley # HermioneGranger
=) HarryPotter: VhasFriend.{RonWeasley} LI {HermioneGranger}
Query: How many friends does Harry Potter have?
— DB: 2
— Ontology: 2!
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Database -v- Ontology

Inserting new facts/data: ShasPet. T C Human
Fawkes: Phoenix Phoenix C VisPetOf.Wizard

Fawkes 1sPetOf Dumbledore
What is the response from DBMS?

— Update rejected: constraint violation
Domain of hasPet is Human; Dumbledore is not Human (CWA)
What is the response from Ontology reasoner?
— Infer that Dumbledore is Human (domain restriction)

— Also infer that Dumbledore is a Wizard (only a Wizard can
have a pheonix as a pet)
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DB Query Answering

* Schema plays no role
— Data must explicitly satisfy schema constraints

* Query answering amounts to model checking
— l.e., a “look-up” against the data

* Can be very efficiently implemented

— Worst case complexity is low (logspace) w.r.t. size of data

Rl DEPARTMENT OF P '«E\%\‘\
 DBO &2 SIRIUS
sty SCIENCE e nto 4




Ontology Query Answering

* Ontology axioms play a powerful and crucial role
— Answer may include implicitly derived facts
— Can answer conceptual as well as extensional queries
« E.g., Can a Muggle have a Phoenix for a pet?
* Query answering amounts to theorem proving

— l.e., logical entailment

* May have very high worst case complexity

— E.g., for OWL, NP-hard w.r.t. size of data
(upper bound is an open problem)

— Implementations may still behave well in typical cases
— Fragments/profiles may have much better complexity
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Ontology Based Information Systems

* Analogous to relational database management systems
— Ontology ~ schema; instances =~ data

* Some important (dis)advantages

+ (Relatively) easy to maintain and update schema
« Schema plus data are integrated in a logical theory

+ Query answers reflect both schema and data

+ Can deal with incomplete information

+ Able to answer both intensional and extensional queries

— Semantics can seem counter-intuitive, particularly w.r.t. data
» Open -v- closed world; axioms -v- constraints

— Query answering (logical entailment) may be much more difficult
« Can lead to scalability problems with expressive logics
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Ontology Based Information Systems

° Analogous to relational g
— Ontology = scherg

nagement systems

* Some important
+ (Relatively)

» Schemz
+ Query ans
+ Can deal
+ Able to an
— Semantics ¢

ries

.r.t. data
* Open -v-
— Query answerir\ uch more difficult

« Can lead to scala® gsive logics
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