
Semantic Technology Tutorial

Part 2: Logical Foundations



What Is OWL?
A Description Logic (DL) with a web-friendly syntax



What Are Description Logics?



What Are Description Logics?
Decidable fragments of First Order Logic

Any questions?

Thank you for listening
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Crash Course in (simplified) FOL
• Syntax

– Non-logical symbols (signature)
• Constants: Felix, MyMat
• Predicates(arity): Animal(1), Cat(1), has-color(2), sits-on(2)

– Logical symbols:
• Variables: x, y
• Operators: ^, _, !, ¬, …
• Quantifiers: 9, 8

• Equality: =

– Formulas:
•
•
•
Formula with no free variables often called a sentence
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Crash Course in (simplified) FOL
• Semantics

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the 
relationship between statements in the logic and the 

existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, in order to specify, build 
and test (ontology-based) tools/systems we 
need to precisely define relationships (like 

entailment) between logical statements – this 
defines the intended behaviour of tools/systems.



Crash Course in (simplified) FOL
• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is 
supposed to be an analogue of (part of) the world being modeled. FOL uses a very 

simple kind of model, in which “objects” in the world (not necessarily physical objects) 
are modeled as elements of a set, and relationships between objects are modeled as 

sets of tuples.



Crash Course in (simplified) FOL
• Semantics

In FOL we define the semantics in terms of models (a model theory). A model is 
supposed to be an analogue of (part of) the world being modeled. FOL uses a very 

simple kind of model, in which “objects” in the world (not necessarily physical objects) 
are modeled as elements of a set, and relationships between objects are modeled as 

sets of tuples.

Note that this is exactly the same kind of 
model as used in a database: objects in the 
world are modeled as values (elements) and 

relationships as tables (sets of tuples).



Crash Course in (simplified) FOL
• Semantics

– Model: a pair            with D a non-empty set and ·I an interpretation
•
•
•

– E.g., 
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false
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true
true



Crash Course in (simplified) FOL
• Semantics

– Given a model M and a formula F, M is a model of F (written M ² F) iff 
F evaluates to true in M

– A formula F is satisfiable iff there exists a model M s.t. M ² F

– A formula F entails another formula G (written F ² G)  iff every model 
of F is also a model of G (i.e., M ² F implies M ² G)

E.g.,
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Decidable Fragments
• FOL (satisfiability) well known to be undecidable

– A sound, complete and terminating algorithm is impossible

• Interesting decidable fragments include, e.g.,
– C2: FOL with 2 variables and Counting quantifiers 

• Counting quantifiers abbreviate pairwise (in-) equalities, e.g.:
equivalent to

equivalent to

– Propositional modal and description logics
– Guarded fragment



Description Logics



What Are Description Logics?
• A family of logic based Knowledge Representation formalisms

– Originally descended from semantic networks and KL-ONE
– Describe domain in terms of concepts (aka classes), roles (aka 

properties, relationships) and individuals

Cat

Animal
IS-A

has-color Black

Felix

IS-A

Mat

IS-A

sits-on

[Quillian, 1967]



What Are Description Logics?
• Modern DLs (after Baader et al) distinguished by:

– Fully fledged logics with formal semantics
• Decidable fragments of FOL (often contained in C2)
• Closely related to Propositional Modal/Dynamic Logics & Guarded Fragment

– Computational properties well understood (worst case complexity)
– Provision of inference services

• Practical decision procedures (algorithms) for key problems 
(satisfiability, subsumption, query answering, etc)

• Implemented systems (highly optimised)

• The basis for widely used ontology languages



• recommendation(s)
• Motivated by Semantic Web activity

Add meaning to web content by annotating 
it with terms defined in ontologies

• Supported by tools and infrastructure
– APIs (e.g., OWL API, Thea, OWLink)
– Development environments 

(e.g., Protégé, Swoop, TopBraid Composer, Neon)
– Reasoners & Information Systems 

(e.g., HermiT, RDFox, FaCT++, Pellet, ELK, Ontop, …)

• Based on Description Logics (SHOIN / SROIQ)

Web Ontology Language OWL (2)



• Signature
– Concept (aka class) names, e.g., Cat, Animal, Doctor

• Equivalent to FOL unary predicates

– Role (aka property) names, e.g., sits-on, hasParent, loves
• Equivalent to FOL binary predicates

– Individual names, e.g., Felix, John, Mary, Boston, Italy
• Equivalent to FOL constants

DL Syntax



• Operators
– Many kinds available, e.g.,

• Standard FOL Boolean operators (u, t, ¬)
• Restricted form of quantifiers (9, 8)
• Counting (¸, ·, =)

• …

DL Syntax



• Concept expressions, e.g.,
– Doctor t Lawyer

– Rich u Happy

– Cat u 9sits-on.Mat

• Equivalent to FOL formulae with one free variable
–
–
–

DL Syntax



• Special concepts
– > (aka top, Thing, most general concept)
– ? (aka bottom, Nothing, inconsistent concept)

used as abbreviations for
– (A t ¬ A) for any concept A
– (A u ¬ A) for any concept A 

DL Syntax



• Role expressions, e.g.,
–

–

• Equivalent to FOL formulae with two free variables
–
–

DL Syntax



• “Schema” Axioms, e.g.,
– Rich v ¬Poor           (concept inclusion)
– Cat u 9sits-on.Mat v Happy (concept inclusion)
– BlackCat Cat u 9hasColour.Black              (concept equivalence)
– sits-on v touches     (role inclusion)
– Trans(part-of)     (transitivity)

• Equivalent to (particular form of) FOL sentence, e.g.,
– 8x.(Rich(x) ! ¬Poor(x))
– 8x.(Cat(x) ^ 9y.(sits-on(x,y) ^ Mat(y)) ! Happy(x))
– 8x.(BlackCat(x) $ (Cat(x) ^ 9y.(hasColour(x,y) ^ Black(y)))
– 8x,y.(sits-on(x,y) ! touches(x,y))
– 8x,y,z.((sits-on(x,y) ^ sits-on(y,z)) ! sits-on(x,z))

DL Syntax



• “Data” Axioms (aka Assertions or Facts), e.g.,
– BlackCat(Felix) (concept assertion)
– Mat(Mat1) (concept assertion)
– Sits-on(Felix,Mat1) (role assertion)

• Directly equivalent to FOL “ground facts”
– Formulae with no variables

DL Syntax



DL Syntax
• A set of axioms is called a TBox, e.g.:

{Doctor v Person,
Parent Person u 9hasChild.Person,
HappyParent Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

• A set of facts is called an ABox, e.g.:

{HappyParent(John), 

hasChild(John,Mary)}

• A Knowledge Base (KB) is just a TBox plus an Abox
– Often written K = hT, Ai

Note
Facts sometimes written
John:HappyParent, 
John hasChild Mary,
hJohn,Maryi:hasChild



The DL Family
• Many different DLs, often with “strange” names

– E.g., EL, ALC, SHIQ

• Particular DL defined by:
– Concept operators (u, t, ¬, 9, 8, etc.)
– Role operators (-, , etc.)
– Concept axioms (v, , etc.)
– Role axioms (v, Trans, etc.)



The DL Family
• E.g., EL is a well known “sub-Boolean” DL

– Concept operators: u, ¬, 9
– No role operators (only atomic roles)
– Concept axioms: v, 
– No role axioms

• E.g.:

Parent Person u 9hasChild.Person



The DL Family
• ALC is the smallest propositionally closed DL

– Concept operators: u, t, ¬, 9, 8
– No role operators (only atomic roles)
– Concept axioms: v, 
– No role axioms

• E.g.:

ProudParent Person u 8hasChild.(Doctor t 9hasChild.Doctor)



The DL Family
• S used for ALC extended with (role) transitivity axioms
• Additional letters indicate various extensions, e.g.:

– H for role hierarchy (e.g., hasDaughter v hasChild)
– R for role box (e.g., hasParent± hasBrother v hasUncle)
– O for nominals/singleton classes (e.g., {Italy})
– I for inverse roles (e.g., isChildOf hasChild–)
– N for number restrictions (e.g., >2hasChild, 63hasChild)
– Q for qualified number restrictions (e.g., >2hasChild.Doctor)
– F for functional number restrictions (e.g., 61hasMother)

• E.g., SHIQ = S + role hierarchy + inverse roles + QNRs



DL Naming Schemes



The DL Family
• Numerous other extensions have been investigated

– Concrete domains (numbers, strings, etc)
– DL-safe rules (Datalog-like rules)
– Fixpoints
– Role value maps
– Additional role constructors (\, [, ¬, , id, …)
– Nary (i.e., predicates with arity >2)
– Temporal
– Fuzzy
– Probabilistic
– Non-monotonic
– Higher-order
– …



DL Semantics
Via translaton to FOL, or directly using FO model theory:

Interpretation domain DIInterpretation function I

Individuals iI 2 DI

John
Mary

Concepts CI µ DI

Lawyer
Doctor
Vehicle

Roles rI µ DI £ DI

hasChild
owns



DL Semantics: Concepts 
• Interpretation function extends to concept expressions

in the obvious(ish) way, e.g.:



DL Semantics: Concepts



DL Semantics: Axioms
• Given a model M = 

–
–
–
–
–



DL Semantics: Axioms



DL Semantics: Conjunctive Queries
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DL Semantics: Conjunctive Queries
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DL Semantics: Reasoning Problems
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DL Semantics:  Examples
E.g.,

– K ² John:Person ?
– K ² Peter:Doctor ?
– K ² Mary:HappyParent ?
– What if we add “Mary hasChild Jane” ?

K ² Peter = Jane
– What if we add “HappyPerson Person u 9hasChild.Doctor” ?

K ² HappyPerson v Parent

T = {Doctor v Person, Parent Person u 9hasChild.Person,
HappyParent Parent u 8hasChild.(Doctor t 9hasChild.Doctor)}

A = {John:HappyParent, John hasChild Mary, John hasChild Sally,
Mary:¬Doctor, Mary hasChild Peter, Mary:(· 1 hasChild)



DL and FOL
• Most DLs are subsets of C2

– But reduction to C2 may be (highly) non-trivial
• Trans(R) naively reduces to 

• Why use DL instead of C2?
– Syntax is succinct and convenient for KR applications
– Syntactic conformance guarantees being inside C2

• Even if reduction to C2 is non-obvious
– Different combinations of constructors can be selected

• To guarantee decidability
• To reduce complexity

– DL research has mapped out the decidability/complexity 
landscape in great detail

• See Evgeny Zolin’s DL Complexity Analyzer
http://www.cs.man.ac.uk/~ezolin/dl/





Complexity



Complexity Measures
• Taxonomic complexity

Measured w.r.t. total size of “schema” axioms

• Data complexity
Measured w.r.t. total size of “data” facts

• Query complexity
Measured w.r.t. size of query

• Combined complexity
Measured w.r.t. total size of KB (plus query if appropriate)



Complexity Classes
• LogSpace, PTime, NP, PSpace, ExpTime, etc

– worst case for a given problem w.r.t. a given parameter
– X-hard means at-least this hard (could be harder);

in X means no harder than this (could be easier);
X-complete means both hard and in, i.e., exactly this hard

• e.g., SROIQ KB satisfiability is 2NExpTime-complete w.r.t. 
combined complexity and NP-hard w.r.t. data complexity

• Note that:
– this is for the worst case, not a typical case
– complexity of problem means we can never devise a more 

efficient (in the worst case) algorithm
– complexity of algorithm may, however, be even higher 

(in the worst case)



DLs and Ontology Languages



• ’s OWL 2 (like OWL, DAML+OIL & OIL) based on DL
– OWL 2 based on SROIQ, i.e., ALC extended with 

transitive roles, a role box nominals, inverse roles and 
qualified number restrictions

• OWL 2 EL based on EL

• OWL 2 QL based on DL-Lite

• OWL 2 EL based on DLP

– OWL was  based on SHOIN

• only simple role hierarchy, and 
unqualified NRs

DLs and Ontology Languages



Class/Concept Constructors



Ontology Axioms

• An Ontology is usually considered to be a TBox 
– but an OWL ontology is a mixed set of TBox and ABox axioms



• XSD datatypes and (in OWL 2) facets, e.g.,
– integer, string and (in OWL 2) real, float, decimal, datetime, …
– minExclusive, maxExclusive, length, …
– PropertyAssertion( hasAge Meg "17"^^xsd:integer ) 
– DatatypeRestriction( xsd:integer xsd:minInclusive "5"^^xsd:integer 

xsd:maxExclusive "10"^^xsd:integer )

These are equivalent to (a limited form of) DL concrete domains

• Keys
– E.g., HasKey(Vehicle Country LicensePlate)

• Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules

Other OWL Features



OWL RDF/XML Exchange Syntax

<owl:Class>
<owl:intersectionOf rdf:parseType=" collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:allValuesFrom>

<owl:unionOf rdf:parseType=" collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:someValuesFrom rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

E.g., Person u 8hasChild.(Doctor t 9hasChild.Doctor):



• From the complexity navigator we can see that:
– OWL (aka SHOIN) is NExpTime-complete
– OWL Lite (aka SHIF) is ExpTime-complete (oops!)
– OWL 2 (aka SROIQ) is 2NExpTime-complete
– OWL 2 EL (aka EL) is PTIME-complete (robustly scalable)
– OWL 2 RL (aka DLP) is PTIME-complete (robustly scalable)

• And implementable using rule based technologies
e.g., rule-extended DBs

– OWL 2 QL (aka DL-Lite) is in AC0 w.r.t. size of data
• same as DB query answering -- nice!

Complexity/Scalability
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Why (Description) Logic?
• OWL exploits results of 20+ years of DL research

– Well defined (model theoretic) semantics
– Formal properties well understood (complexity, decidability)

[Garey & Johnson. Computers and Intractability: A Guide to the Theory 
of NP-Completeness. Freeman, 1979.]

I can’t find an efficient algorithm, but neither can all these famous people.
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Why (Description) Logic?
• OWL exploits results of 20+ years of DL research

– Well defined (model theoretic) semantics
– Formal properties well understood (complexity, decidability)
– Known reasoning algorithms
– Scalability demonstrated by implemented systems
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Pellet
KAON2 CEL

Hermit
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Tools, Tools, Tools
Major benefit of OWL has been huge increase in range
and sophistication of tools and infrastructure:
• Editors/development environments
• Reasoners 
• Explanation, 
justification 
and pinpointing
• Integration and 
modularisation
• APIs, in particular the OWL API



Ontology -v- Database



Obvious Database Analogy
• Ontology axioms analogous to DB schema

– Schema describes structure of and constraints on data

• Ontology facts analogous to DB data
– Instantiates schema
– Consistent with schema constraints

• But there are also important differences…



Obvious Database Analogy
Database:
• Closed world assumption (CWA)

– Missing information treated 
as false

• Unique name assumption (UNA)
– Each individual has a single, 

unique name

• Schema behaves as constraints
on structure of data

– Define legal database states

• Single canonical model
– Can check entailments (query 

answers) w.r.t. this model

Ontology:
• Open world assumption (OWA)

– Missing information treated 
as unknown

• No UNA
– Individuals may have more 

than one name

• Ontology axioms behave like 
implications (inference rules)

– Entail implicit information

• Typically multiple models
– Need to check entailment w.r.t. 

all models



Database -v- Ontology
E.g., given the following ontology/schema:

HogwartsStudent Student u 9 attendsSchool.Hogwarts
HogwartsStudent v 8hasPet.(Owl or Cat or Toad)
hasPet isPetOf - (i.e., hasPet inverse of isPetOf)
9hasPet.> v Human (i.e., domain of hasPet is Human)
Phoenix v 8isPetOf.Wizard (i.e., only Wizards have Phoenix pets)
Muggle v ¬Wizard (i.e., Muggles and Wizards are disjoint)



Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: Is Draco Malfoy a friend of HarryPotter?
– DB: No
– Ontology: Don’t Know

OWA (didn’t say Draco was not Harry’s friend)



Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig

Query: How many friends does Harry Potter have?
– DB: 2
– Ontology: at least 1

No UNA (Ron and Hermione may be 2 names for same person)



Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
RonWeasley ¹ HermioneGranger

Query: How many friends does Harry Potter have?
– DB: 2
– Ontology: at least 2

OWA (Harry may have more friends we didn’t mention yet)

è



Database -v- Ontology
And the following facts/data:

HarryPotter: Wizard
DracoMalfoy: Wizard
HarryPotter hasFriend RonWeasley
HarryPotter hasFriend HermioneGranger
HarryPotter hasPet Hedwig
RonWeasley ¹ HermioneGranger
HarryPotter: 8hasFriend.{RonWeasley} t {HermioneGranger}

Query: How many friends does Harry Potter have?
– DB: 2
– Ontology: 2!

è



Database -v- Ontology
Inserting new facts/data:

Fawkes: Phoenix
Fawkes isPetOf Dumbledore

What is the response from DBMS?
– Update rejected: constraint violation

Domain of hasPet is Human; Dumbledore is not Human (CWA)

What is the response from Ontology reasoner?
– Infer that Dumbledore is Human (domain restriction)
– Also infer that Dumbledore is a Wizard (only a Wizard can 

have a pheonix as a pet)

9hasPet.> v Human
Phoenix v 8isPetOf.Wizard



DB Query Answering
• Schema plays no role

– Data must explicitly satisfy schema constraints

• Query answering amounts to model checking
– I.e., a “look-up” against the data

• Can be very efficiently implemented
– Worst case complexity is low (logspace) w.r.t. size of data



Ontology Query Answering
• Ontology axioms play a powerful and crucial role

– Answer may include implicitly derived facts
– Can answer conceptual as well as extensional queries

• E.g., Can a Muggle have a Phoenix for a pet?

• Query answering amounts to theorem proving
– I.e., logical entailment

• May have very high worst case complexity
– E.g., for OWL, NP-hard w.r.t. size of data

(upper bound is an open problem)
– Implementations may still behave well in typical cases
– Fragments/profiles may have much better complexity



Ontology Based Information Systems
• Analogous to relational database management systems

– Ontology ¼ schema; instances ¼ data

• Some important (dis)advantages
+ (Relatively) easy to maintain and update schema

• Schema plus data are integrated in a logical theory
+ Query answers reflect both schema and data
+ Can deal with incomplete information
+ Able to answer both intensional and extensional queries
– Semantics can seem counter-intuitive, particularly w.r.t. data

• Open -v- closed world; axioms -v- constraints
– Query answering (logical entailment) may be much more difficult

• Can lead to scalability problems with expressive logics
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