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SemTech Languages

Standardised language for data
= W3C standard for data exchange is RDF
= RDF is a simple language consisting of <S P O> triples
= for example <eg:lan eg:worksAt eg:Oxford>
= all S,P,0 are URIs or literals (data values)
= URIs provides a flexible naming scheme

= Set of triples can be viewed as a graph
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SemTech Languages

1 Standardised language for data

http:/Awww.w3.0rg/2000/10/swap/pim/contact#Person

—— Mﬂm w3.0rgM 99%02/22 rdf-syntax-ns#type

http:/ ...rdf-syntax-ns/#type/\ http:/iwww.w3.org/People/EM/contact#me
eg:worksfor

eg:w3c

it fwww w3.orgf2000010fswap/pimicontact#fuliName

http://...fullName Eric Miller

hitp:fhwww w2.orgf2000/ 10fswap/pmicontact#mailbox
eg:Boston W3C

mailto:em@w3.org

hitp: fwww w3, orgi2000810/swap/pmicontact#personal Title

Dr.
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SemTech Languages

1 Standardised language for data

Triple

S P o)

em1234 rdf:type Person

em1234 name “Eric Miller”
em1234 title “Dr”

em1234 mailbox mailto.:em@w3.org
em1234 worksfor w3c

w3c rdf:type organisation

w3cC hq Boston

w3cC name “W3C”
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SemTech Languages

1 Standardised language for data

PERSON
ID NAME TITLE MAILBOX WORKSFOR
em1234  “Eric Miller” “Dr” mailto:em@w3.org w3C

ORGANISATION
ID NAME HQ
w3c “W3C” Boston
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SemTech Languages W3~

o/

2 Standardised language for vocabularies/schemas
= W3C standard for vocabulary/schema exchange is OWL
= OWL provides for rich conceptual schemas, aka ONTOLOGIES

Heart C MuscularOrgan
JisPartOf.CirculatorySystem
HeartDisease = Disease [
Jaffects.Heart
VascularDisease = Disease ]
Jaffects.(JisPartOf.CirculatorySystem)
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SemTech Languages stv

&/
3 Standardised language for queries

= W3C standard for queries is SPARQL
= SPARQL provides a rich query language comparable to SQL

SELECT 7x
WHERE
{ ?x rdf:type Patient
?x suffersFrom 7y .
7y rdf:type VascularDisease }
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How Does it Work?

T
]

(John rdf:type Patient)
(John suffersFrom d1)
(d1 rdf:type HeartDisease)

~

td COMPUTER
(0),43(0)23)) SCIENCE
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How Does it Work?

T
]

(John rdf:type Patient)
(John suffersFrom d1)
(d1 rdf:type HeartDisease)

~

Heart C MuscularOrgan 1
JisPartOf.CirculatorySystem
HeartDisease = Disease Il
Jaffects.Heart
VascularDisease = Disease [
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How Does it Work?

T
]

(John rdf:type Patient)
(John suffersFrom d1)
(d1 rdf:type HeartDisease)

~

Heart C MuscularOrgan 1
JisPartOf.CirculatorySystem
HeartDisease = Disease Il
Jaffects.Heart
VascularDisease = Disease ']
Jaffects.(JisPartOf.CirculatorySystem)

Is heart disease a kind
of vascular disease?
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How Does it Work?

T
]

(John rdf:type Patient)
(JOhn SUfFerSFrom d1> Heart = JisPartOf.CirculatorySystem, - -
(d1 rdf:type HeartDisease) ' >

\—/ 6
Heart C MuscularOrgan 1
JisPartOf.CirculatorySystem
HeartDisease = Disease Il
Jaffects.Heart

VascularDisease = Disease [l
Jaffects.(JisPartOf.CirculatorySystem)
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RDF and RDFS

W3C STANDARDS

m An ontology language defines constructs available to modellers

m E.g., kinds of statements about concepts (conjunction, negation, .. .)
m Formal semantics specifies mathematically the constructs’ meaning
m Semantics determines the inferences one can draw

m Standard languages facilitate interoperability

m Semantic Web language stack:

Resource Description Framework (RDF) basic semistructured data model

RDF Schema (RDFS) a simple ontology language over RDF
Web Ontology Language (OWL) 2 extends RDFS to an expressive language
m OWL 2 Full undecidable

m OWL 2 DL decidable, based on description logics

m OWL 2 EL

m OWL 2 QL profiles: trade expressivity for efficiency
m OWL 2 RL

Semantic Web Rule Language (SWRL) udnofficial rule standard
Rule Interchange Format (RIF) (mainly production) rule standard



RDF and RDFS

RESOURCE DESCRIPTION FRAMEWORK (RDF): BASIC CONCEPTS

m Node — an object one can make statements about (often called resource)
m |Rl — well-known identifier for an object
m E.g., (http://skyscanner.net/Savoy), often abbreviated as sky:Savoy
m Blank node — an object with an unknown identity (aka labelled null)
m EgQ.,_x
m Literal — concrete value such as a string or an integer
m E.g., “abc”xsd:string, “1”""xsd:integer, “+01”~"xsd:byte

m [riple — the simplest statement about objects

m (S,p,0) with s, p, and o0 nodes: object o is the value of property p on subject s
m E.g., (:Savoy, :locatedIn, :London), (:Savoy, rdf:type, :Hotel)

m RDF graph — a finite set of RDF triples
m Can be understood as a three-column relation over nodes

m RDF dataset — a finite set of RDF graphs, each associated with a node

m Built-in vocabulary: rdf:type, rdf:Property, ...
m rdf:type states that a node is an instance of a class

m More details at http://www.w3.0rg/TR/rdfll-concepts/



RDF and RDFS

EXAMPLE RDF GRAPH

m RDF graphs can be represented graphically
m Properties are nodes, so one can make statements about them

@ :containedin

A
rdfs:subPropertyOf
rdfs:domain
‘Accommodation @ @ /ocatedin
A
rdfs:subClassOf rdfs:range
Y
‘Hotel @ @ City
A A
rdf:type rdf:type
:Savoy @ ~@ :London

Jlocatedin



RDF/XML SYNTAX

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns="http://skyscanner.net/">

<rdf:Description rdf:about="http://skyscanner.net/Hotel">
<rdfs:subClassOf rdf:resource="http://skyscanner.net/Accommodation"/>
</rdf:Description>

<rdf:Description rdf:about="http://skyscanner.net/Savoy">
<rdf:type rdf:resource="http://skyscanner.net/Accommodation"/>
<locatedIn rdf:resource="http://skyscanner.net/London"/>
</rdf:Description>

<rdf:Description rdf:about="http://skyscanner.net/London">
<rdf:type rdf:resource="http://skyscanner.net/City"/>
</rdf:Description>

<rdf:Description rdf:about="http://skyscanner.net/locatedIn">
<rdfs:domain rdf:resource="http://skyscanner.net/Accommodation"/>
<rdfs:range rdf:resource="http://skyscanner.net/City"/>
<rdfs:subPropertyOf rdf:resource="http://skyscanner.net/containedIn"/>
</rdf:Description>

</rdf :RDF>



RDF and RDFS

TURTLE SYNTAX

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix : <http://skyscanner.net/>

:Hotel rdfs:subClassOf :Accommodation

:Savoy rdf:type :Accommodation ;
:locatedIn :London"

:London rdf:type :City
:locatedIn rdfs:domain :Accommodation ;

rdfs:range :City ;
rdfs:subPropertyOf :containedIn

m Much more readable and compact!
m http://www.w3.0rg/TR/turtle/



RDF and RDFS

EMBEDDING RDF INTO RELATIONAL MODEL

m RDF data can be stored in a relational database in (at least) two ways

m Dictionary encoding commonly used to map nodes to integers

m [riple table approach

m Store triples in a three-column table

m Exhaustive indexing can be achieved using only six indexes

m Often extended to quads — triples with additional graph membership node
m Main benefit: flexibility to support any kind of query

m Main problem: queries involve many self-joins on the triple table

m \ertical partitioning approach

m Use binary relations for properties, unary relations for classes
m Store (s, p, 0) with p # rdf:type as tuple (s, 0) in relation p
m Store (s, rdf:type, o) as tuple (s) in relation o
m Use exhaustive indexing

m Main benefit: avoids self-joins — easier for DBMSs

m Main problem: does not support queries with variables in predicate position



RDF and RDFS

RESTRICTION TO BINARY RELATIONS AND REIFICATION

m RDF supports only binary relations — often very restrictive in practice
m E.g., ‘British Airways operates flight BA1452 from LHR to EDI’

m Reification represents a statement as an object

‘operator =X -flightNo

BA @~ @ BA1452
:frc‘)% ‘to

LHR @ @ DI

m Can be used to make statements about triples
m E.g., ‘(:Sawvoy, :locatedin, :London) was obtained from Expedia’

rdf:subject -X rdf:type
:Savoy @< ~@ rdf:Statement

rdf:predicate % ON

:locatedin @ @ :London @ Expedia




RDF and RDFS

LITERALS

m ‘lexicalValue” " datatypelRI — datatypelRI identifies a datatype that specifies
how to map “lexicalValue”to a concrete value

m Many datatypes come from XML Schema 1.1
m http://www.w3.0rg/TR/xmlschemall-2/

m E.g., “abc” xsd:string, “1”~"xsd:integer, “+01”""xsd:byte

m Syntactic shortcuts:

m xsd:string can be omitted: “abc”"xsd:string — “abc”
m “abc’@en supports localisation — equivalent to “abc@en”"rdf:PlainLiteral

m Literal equality and equivalence are different concepts:

m Equal if lexical values and datatypes are the same
m Equivalent if mapped to the same value
m E.g., “1""xsd:integer and “+01"""xsd:byte are not equal, but are equivalent

m RDF systems often normalise literals on import
m E.g., 401" " xsd:byte is stored as “1”""xsd:integer



RDF SCHEMA (RDFS)

m RDFS: a simple ontology language for RDF data

m Introduces special vocabulary

m E.g., rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, . ..
m Schema not separate from data = schema is data

m RDF(S) semantics specifies consequences of the special vocabulary

m http://www.w3.0rg/TR/2014/REC-rdfl11-mt—-20140225/
m Can be captured using entailment rules

m E.g., ‘If ?Xis an instance of ?Y, and ?Y is a subclass of ?Z, then ?X is an instance of ?Z’

@ containedin

A
rdfs:subPropertyOf
rdfs:domain
‘Accommodation @ @ :/ocatedin
A
rdfs:subClassOf rdfs:range
Y
‘Hotel @ @ City
A A
rdf:type rdf:type
:Savoy @ ~@ :London

locatedin



RDF SCHEMA (RDFS)

m RDFS: a simple ontology language for RDF data

m Introduces special vocabulary

m E.g., rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range, . ..
m Schema not separate from data = schema is data

m RDF(S) semantics specifies consequences of the special vocabulary

m http://www.w3.0rg/TR/2014/REC-rdfl11-mt—-20140225/
m Can be captured using entailment rules

m E.g., ‘If ?Xis aninstance of ?Y, and ?Y is a subclass of ?Z, then ?X is an instance of ?Z’

@ :containedin
A

rdfs:subProperty Of
rdfs:domain
:Accommodation @~ @ :/ocatedin
A
rdfs:subClassOf rdfs:range

Y
:Hotel @ | rdf:type @ City

A A

raf:type | | :containedin | rdf:type

/\

:Savoy @ ~@ :London
‘locatedIn




Basics of Datalog

WHAT IS DATALOG?

m Datalog captures entailment rules in a formal way
m Related to Prolog, widely used in databases and Semantic Web

m [erm — a node or a variable
m E.g., ?X, sometimes also written as #X

m (RDF) atom — a triple in which s, p, and o are terms (not just nodes)
m E.g., (?X, rdf:type, :City), (?X, :locatedIn,?Y)
m General atoms have form R(ty, ..., ty) for R an n-ary relation
m In RDF, there is just one ‘triple’ relation so we omit it
m Equivalent logical notation:

m Classes — unary relations: (?X, rdf:type, :City) «~ :City(?X)
m Properties — binary relations: (?X, :locatedin,?Y) «~ :locatedIn(?X,?Y)
m Works if triples do not contain variables in class/property positions

m (Datalog) rule — implication of the form H <+ By A ... A B,

m Also writtenas H:— By, ..., Bx.

m H is the head atom

m By,...,B;,are body atoms

m Each rule must be safe: each variable in the rule must occur in some body atom

m (Datalog) program — a finite set of rules



Basics of Datalog

CAPTURING ENTAILMENT RULES OF RDFS IN DATALOG

m Entailments about schema:

(?X, rdfs:subClassOf, 7Z) < (?X, rdfs:subClassOf,?Y) N (?Y, rdfs:subClassOf, ?Z)
(?X, rdfs:subPropertyOf, 7Z) < (?X, rdfs:subPropertyOf,?Y) N (?Y, rdfs:subPropertyOf, 7 Z)
(?X, rdfs:domain, 7Z) < (?X, rdfs:domain,?Y) A (?Y, rdfs:subPropertyOf, ?Z)
(?X, rdfsirange, ?Z) < (?X, rdfs:range,?Y) A (?Y, rdfs:subPropertyOf, ?Z)

m Rules in red are not mentioned in standards, but should be
m This part of the standard is, IMHO, poorly designed

m Entailments about data:

(?X, rdf:type, ?Z

X, W, Z
(?X, rdf:type, ?Z
(7Y, rdf:type, ?Z

X, rdf:itype, 7YY A (?Y, rdfs:subClassOf, 72)
?X,?Y,1Z) A (?Y, rdfs:subPropertyOf, ? W)
X, PW, Y)Y A (?W, rdfs:domain, ?7Z)
XMWY A (PW, rdfsirange, 7 Z)

P . N

i
-
.
-

~ ~— ~— ~—

m Rules are fixed = do not depend on the ontology



Basics of Datalog

ALTERNATIVE: ONTOLOGY-SPECIFIC ENTAILMENT RULES

m One can use rules created for each ontology separately:

(?X, rdf:type, :Accommodation (?X, rdf:type, :Hotel)
(?X, :locatedIn, ?Y)

(7Y, rdf:type, :City (

(

(?X, :containedIn, 7Y

?X, :locatedIn, ?Y)

)
(?X, rdf:type, :Accommodation)
)
) ?X, locatedIn, ?Y)

A
-
-
-

m Often written using logical syntax:

:Accommodation(?X) <+ :Hotel(?X)

:Accommodation(?X) <« :locatedIn(?X,?Y)
:City(?X) « :locatedIn(?X,?Y)

containedIn(?X,?Y) < :locatedIn(?X,?Y)

m More rules, but fewer body atoms

m More efficient due to shorted rules
m Can capture only data entailments

m See B. N. Grosof. I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logic. Proc. WWW 2003, pages 4857



Basics of Datalog

SEMANTIC WEB RULE LANGUAGE (SWRL)

m De facto standard for rules on the Web
m http://www.w3.0rg/Submission/SWRL/
m Several syntaxes, one of them encodes rules into RDF

<ruleml:imp>
<ruleml:_body>
<owlx:Class owlx:name="Hotel" />
<ruleml:var>X</ruleml:var>
</swrlx:classAtom>
</ruleml:_body>
<ruleml: head>
<swrlx:classAtom>
<owlx:Class owlx:name="Accommodation" />
<ruleml:var>X</ruleml:var>
</swrlx:classAtom>
</ruleml: head>
</ruleml:imp>



RULE INTERCHANGE FORMAT (RIF)

m A standard for rules on the Web
m http://www.w3.0rg/standards/techs/rif#w3c_all
m IMHO, mostly used in production rule systems, not the Semantic Web

Document (
Prefix (sky <http://skyscanner.net/>)

Group (
Forall ?2X (
sky:Accommodation (?X) :— sky:Hotel (?X)
)
Forall ?X (
sky:Accommodation (?X) :— sky:locatedIn (?X ?Y)

)
Forall ?2Y (

sky:City (?X) :—- sky:locatedIn (?X ?Y)
)
Forall ?Y (

sky:containedIn (?X ?Y) :- sky:locatedIn(?X ?Y)
)



Basics of Datalog

RECURSION

m Rules can express recursive queries!

m Significantly more expressive than relational databases

m WITH clause in SQL-1999 supports limited recursion
m Not widely (efficiently) implemented

m Reachability:

:Reachable(?Y) < :Reachable(X) A :connected(?X,?Y)
:Reachable( :source)

m [ransitivity:

:connected(? X, ?Z) «+ :connected(?X,?Y) A :connected(?Y,?Z)



Basics of Datalog

RULE-GOAL GRAPH

/K

A(PX) « :RX,?Y) A B?Y) @ B(2X) « A(?X)

<

m A program is recursive if its rule-goal graph contains a cycle



Basics of Datalog

SEMANTICS OF DATALOG

m |terative semantics: apply rules as long as new facts are derived
m Example rule: (7Y, rdf:type, :A) < (?X, rdf:type, :A) A (?X,:R,?Y)

‘A
®
rdf:typ
[ > >~@ >~@ >
:at - ‘a2 A ‘a3 = :a4 A :ad



Basics of Datalog

SEMANTICS OF DATALOG

m |terative semantics: apply rules as long as new facts are derived
m Example rule: (7Y, rdf:type, :A) < (?X, rdf:type, :A) A (?X,:R,?Y)

‘A
o
rdf:typ
[ > >~@ >~@ >
:at - ‘a2 A ‘a3 = :a4 A :ad



Basics of Datalog

SEMANTICS OF DATALOG

m |terative semantics: apply rules as long as new facts are derived
m Example rule: (7Y, rdf:type, :A) < (?X, rdf:type, :A) A (?X,:R,?Y)

‘A
®
A
rdf:typ
[ > > >~@ >
:at i :az R :a3 A a4 R :ab



Basics of Datalog

SEMANTICS OF DATALOG

m |terative semantics: apply rules as long as new facts are derived
m Example rule: (7Y, rdf:type, :A) < (?X, rdf:type, :A) A (?X,:R,?Y)

‘A
o
A
rdf:typ
[ > > >@ >
:at i :az R :a3 A a4 R :ab



Basics of Datalog

SEMANTICS OF DATALOG

m |terative semantics: apply rules as long as new facts are derived
m Example rule: (7Y, rdf:type, :A) < (?X, rdf:type, :A) A (?X,:R,?Y)

‘A
o
A
rdf:typ rdf:type
[ > > >@ >
:at - ‘a2 A ‘a3 = :a4 A :ad



Basics of Datalog

SEMANTICS OF DATALOG

m |terative semantics: apply rules as long as new facts are derived
m Example rule: (7Y, rdf:type, :A) < (?X, rdf:type, :A) A (?X,:R,?Y)

A
®
A
rdf:typ rdf:type
o ~@ ~@ ~@ ~@
:at ‘R a2 ‘R .asd R a4 ‘R :ab

m The number of iterative steps depends on the program and the data

m Cannot be determined in advance by just looking at the program
m Crucial aspect of recursion

m Semantics just specifies the meaning: implementation can be different



OwWL

WEB ONTOLOGY LANGUAGE (OWL)

m Benefits of OWL at a glance:

m Decidable, but yet very expressive fragment of datalog*:V
m More user-friendly representation style (no variables)
m W3C standard (http://www.w3.0rg/TR/owl2-overview/)

m Can describe complex concepts using class expressions

m E.g., ‘Hotel located at some beach’, ‘Hotel with exactly two swimming pools’, ‘Not a
hotel’, ‘Hotel with only non-smoking rooms’, ‘Hotel or B&B’

m Features: conjunction, disjunction, negation, existential and universal quantification,
and cardinality restrictions

m Can describe class expression hierarchies

m E.g., ‘Each country is headed by a king or a president’, ‘A kingdom is a country
headed only by a king’, ‘Nobody is both a king and a president’, ‘A king is a
monarch’, ‘A country headed by a monarch is a monarchy’

m Can express complex role properties

m ‘A friend of a friend is a friend’, ‘An enemy of an enemy is a friend’, ‘A father’s
brother is an uncle’, ‘If A is reachable from B, then B is reachable from A’



OwWL

FUNCTIONAL-STYLE SYNTAX

SubClassOf (
:Country
ObjectSomeValuesFrom( :headedBy ObjectUnionOf( :King :President ) )

SubClassOf (
:Kingdom
ObjectIntersectionOf (
:Country
ObjectAllValuesFrom( :headedBy :King )

DisjointClasses( :King :President )
SubClassOf ( :King :Monarch )

SubClassOf (
ObjectIntersectionOf (
:Country ObjectSomeValuesFrom( :headedBy :Monarch )

)

:Monarchy



OwWL

OWL/XML SYNTAX

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:owl="http://www.w3.0rg/2002/07/owl#">

<rdf:Class rdf:about="http://skyscanner.net/Country">
<rdfs:subClassOf>
<rdf:Restriction>
<owl:onProperty rdf:resource="http://skyscanner.net/headedBy"/>
<owl:someValuesFrom>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="http://skyscanner.net/King"/>
<owl:Class rdf:about="http://skyscanner.net/President"/>
</owl:unionOf>
</owl:Class>
</owl:someValuesFrom>
</rdf:Restriction>
</rdfs:subClassOf>
</rdf:Class>

</rdf :RDF>

m Widely used, but awkward and unreadable = mostly machine-generated!



OwWL

MANCHESTER SYNTAX

Prefix: : <http://skyscanner.net/>
:Country

SubClassOf: :headedBy some ( :King or :President )
:Kingdom

SubClassOf: :Country and ( :headedBy all :King )
:King

SubClassOf: :Monarch

DisjointWith: :President

:Auxiliary
EquivalentTo: :Country and ( :headedBy some :Monarch )
SubClassOf: :Monarchy

m Compact and readable
m Does not cover OWL 2 faithfully — hence the :Auxiliary class!



OwWL

RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

m Description logics (DLs) provide the formal underpinning of OWL

m Studied in-depth in theory
m Tradeoff between complexity and expressivity is well understood
m Extensive body of research in practical reasoning

m More compact syntax, used mostly by theoreticians in academic publications:

:Country C d:headedBy.(:King U :President)
:Kingdom C :Country MV :headedBy.:King
‘King M :President C |
:King = :Monarch
:Country 1 d:headedBy.:Monarch C :Monarchy



OwWL

RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

XSD datatypes and (in OWL 2) facets, e.g.,
— integer, string and (in OWL 2) real, float, decimal, datetime, ...
— minExclusive, maxExclusive, length, ...
— PropertyAssertion( hasAge Meg "17"*xsd:integer )

— DatatypeRestriction( xsd:integer xsd:minlnclusive "5"*xsd:integer
xsd:maxExclusive "10"*xsd:integer )

These are equivalent to (a limited form of) DL concrete domains

Keys
— E.g., HasKey(Vehicle Country LicensePlate)

« Country + License Plate is a unique identifier for vehicles

This is equivalent to (a limited form of) DL safe rules
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

Keys

e HasKey axioms provide funcionality similar to keys in relational
databases.

e A HasKey axiom is of the form:

HasKey(C'(p1-..pn)(di ... dm))

where C is a class, p; is an object property and d; is a data
property.

e Axiom states that no two distinct named instances of class C
can be related to the same set of individuals and literals via
the given properties.
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

Keys

More formally, if ontology O includes an axiom:

HasKey(C(py...pn)(dy ... dp))
then a model Z of O has to satisfy the following condition:

For each pair a, b of individuals occurring in O, with {a?,b*} C CZ,
and foreache € AT, v e AP, 1 <i<nandl<j<m,if

€ pf < (bt,e) € pF and

[
. cd; — (b',v) ed;

)
)

then a = b~.
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

For example, if an ontology O includes the following axiom and asser-
tions

HasKey( :Person ( :hasChild ) ( :hasGender ) )
ClassAssertion( :Person :FElizabeth )
ObjectPropertyAssertion( :hasChild :Elizabeth :Mary )
DataPropertyAssertion( :hasGender :Elizabeth "F" )
ClassAssertion( :Person :Liz )
ObjectPropertyAssertion( :hasChild :Liz :Mary )
DataPropertyAssertion( :hasGender :Liz "F" )

then O entails SameIndividual( :FElizabeth :Liz ). If O additionally
includes the following axioms and assertions
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

ClassAssertion( ObjectSomeValuesFrom( hasFriend :P ) :John )
SubClass0f( :P ObjectHasValue( hasChild :Mary ) )
SubClassOf( :P DataHasValue( hasGender "F" ) )

SubClassOf( :P :Person ), SubClass0f( :P :Happy ),
ClassAssertion( ObjectComplementOf( : Happy ) :Liz )

then is @ inconsistent?
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

Anonymous Individuals

e Recall that ABox assertions in OWL directly correspond to
RDF triples of the form (a, rdf:type, C') and (a, p,b), where
C' is a class, p is a property, and a, b are IRIs.

e Unlike standard DLs, a and b do not have to be named
individuals, but can also be RDF blank nodes.

e Blank nodes are denoted by the use of _ : as an IRI prefix
(e.g., _: x), and are treated as variables that are existen-
tially quantified at the outer level of the ABox.

e In OWL, blank nodes used in ABox assertions are called
anonymous individuals.
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

For example, the assertions

ObjectPropertyAssertion( :hasFriend :Liz —:x )
ObjectPropertyAssertion( :livesIn =z _y )
ObjectPropertyAssertion( :livesIn :Mary _:y )

assert that :Liz has a friend who lives in the same place as :Mary with-
out explicitly naming the friend or the place where they live; they are
semantically equivalent to a first-order logic sentence of the form

Jz3y (hasFriend(Liz, x) A livesIn(x,y) A livesIn(Mary,y)).

These assertions can also be written as a semantically equivalent
SROLQ concept assertion

Liz : AhasFriend.(IlivesIn.(livesIn™ .{ Mary})),



OwWL

RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

Metamodelling

In some applications it may be desirable to use the same name for both
a class (or property) and an individual. For example, we might want to
state that : Harry is an instance of : Fagle

ClassAssertion( :Fagle :Harry )
and that :Fagle is an instance of : EndangeredSpecies
ClassAssertion( :EndangeredSpecies :Fagle ).

We could then extend our modelling of the domain to describe classes of
classes, e.g., by stating that it is illegal to hunt any class of animal that
is an instance of : EndangeredSpecies; this is often called metamodelling.
Metamodelling is not possible in a standard DL, where it is usually
assumed that the sets C, R and I (of, respectively, concept, role and
individual names) are pairwise disjoint, and where class assertions can
only be used to describe individual names; i.e., in an assertion a:C, a
must be an individual name.
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

e OWL 2 uses a mechanism known as punning to provide a

simple form of metamodelling while still retaining the cor-
respondence between OWL ontologies and SROZQ KBs.

e Punning allows for the same IRI to be used as an individual,
a class and a property, but IRIs used in the individual, class
and property contexts are semantically unrelated.

e This is equivalent to rewriting the ontology by adding unique
prefixes such as 7 :, ¢ : and p : to IRIs according to the con-
text in which they occur. For example:

ClassAssertion( c:Fagle i:Harry )
ClassAssertion( c:EndangeredSpecies i:FEagle )



OwWL

RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

Annotations

e OWL includes a flexible annotation mechanism that allows
for comments and other “non-logical” information to be
included in the ontology.

e An OWL annotation consist of an annotation property and
a literal, and zero or more annotations can be attached to
class, property and individual names, to axioms and asser-
tions, to datatypes, to the ontology as a whole, and even
to annotations themselves; for example:

ClassAssertion( Annotation( rdfs:comment "Liz is a person" )

: Person :Liz )
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RELATIONSHIP TO DESCRIPTION LOGICS (DLS)

Other OWL Features

Imports

e The OWL Import statement provides a mechanism for “im-
porting” the contents of one ontology document into an-
other

e For example, if :ontl includes the statement:

Import( :ont2 )

then :ontl is treated as though it also includes all of the
contents of :ont2 and, recursively, any ontology documents
imported by :ont2.

e The OWL specification defines a parsing procedure that
extracts ontological content from the current ontology doc-
ument and all those that it (possibly recursively) imports,
while ensuring termination even if ontology documents (di-
rectly or indirectly) import each other cyclically.
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COMPLETE VS. INCOMPLETE KNOWLEDGE (1)

EXAMPLE

m Known fact: ‘Mary is a woman’

m Question: ‘Does Mary have a daughter?’
m Database/datalog answer: ‘No’ — intuitive!

m Question: ‘Does Mary not have a daughter?’

m Intuitive answer: ‘Don’t know’ — not enough information!
m Database/datalog answer: ‘No’ — not in the database, so ‘No’
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COMPLETE VS. INCOMPLETE KNOWLEDGE (II)

m Databases/datalog assume complete knowledge

m Everything that is not provable is false — closed-world assumption
m Appropriate in some cases: flight schedules, corporate profits, . ..
m Inappropriate in others: mathematics, certain common-sense reasoning, . . .

m Many situations have incomplete knowledge
m Negative information must be explicitly provable

EXAMPLE

m Known facts: ‘Every man is a person’, ‘Garfield is not a person’

m Can deduce ‘Garfield is not a man’ — proof by contradiction

Assume the opposite: ‘Garfield is a man and not a person’

By ‘Every man is a person’, we have ‘Garfield is a man, a person, and not a person’
This is a contradiction, so ‘Garfield is a man’ cannot be true

B But ‘Either Garfield is a man, or Garfield is not a man’ (aka law of excluded middle)
Hence, ‘Garfield is not a man’ is true
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CLASSICAL NEGATION

m Classical negation — works under incomplete knowledge

m Comes from propositional and first-order predicate logic
m Very different from database-style not from datalog
m Used in OWL 2 as ObjectComplementOf

EXAMPLE

:Man(:garfield) —:Person( :garfield) V?X.[:Person(?X) < :Man(?X)]

m Can use —in front of facts or rule heads (e.g., —:Person(:garfield))
m Material implication < is different from datalog implication <

A<=B )
AV —B

1l < -AAB
-B < —A

> all equivalent to each other
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COMPARING TWO KINDS OF IMPLICATION

Material implication Datalog implication
Ontology: V?X.[:Person(?X) <= :Man(?X)] :Person(?X) < :Man(?X)
Facts: :Man( :peter) :Man( :peter)
:Man(:paul) :Man(:paul)
Conclusions: :Perso.n.(':peter) :Perso.n.(.:peter)
:Person( ;paul) :Person(:paul)

= No observable difference on negation-free rules and positive facts.

More facts: —:Person(:garfield) Syntax error!
More conclusions: —:Man(:garfield)

= Difference observable if facts or rules contain negation.

m Lots of theoretical work on integrating the two — very hard problem!
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OWL 2 PROFILES

m Reasoning in OWL 2 is of high worst-case computational complexity

m Undecidable for the RDF version of OWL 2
m N2EXPTIME for the DL version of OWL 2

m OWL 2 profiles trade some expressivity for lower complexity
m http://www.w3.0rg/TR/owl2-profiles/

m OWL2RL

m No support for incomplete information
m Can be implemented fully using datalog (without negation)
m Targets mainly database-like warehousing-style applications

m OWL 2 QL

m Incompleteness via existential quantification, but not disjunction
m No support for recursion

m Can be implemented using query rewriting

m Targets virtual information integration

m OWL2 EL

m Incompleteness via existential quantification, but not disjunction
m Supports recursion

m T[ractable query answering

m Targets applications that rely on expressive taxonomies



Querying Semantic Data

SPARQL PROTOCOL AND RDF QUERY LANGUAGE

m Current version 1.1
m http://www.w3.0rg/TR/sparglll-query/
m Used to query RDF and OWL systems

m Uses a familiar SELECT-WHERE paradigm

m [wo parts:
m Basic SPARQL — roughly as expressive as SQL
m No recursive queries
m Property paths in 1.1 version — expressivity beyond SQL
m Supports property paths — a form of recursion




BASIC SPARQL

Matching of graph patterns
m Entailment regimes determine semantics of matches

Relational algebra over answers to graph patterns

m Union, subtraction, subqueries, built-in expressions, aggregate functions
m No NULL-values, but variables can be unbound

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—ns#>
PREFIX : <http://skyscanner.net/>
SELECT ?H ?N WHERE ({

?H rdf:type :Hotel ; :hasName ?N ; :hasAmenity :Wifi
}

SELECT ?H ?N ?D WHERE ({

?H rdf:type :Hotel ; :name ?N . OPTIONAL { ?H :offersDiscount ?D }
}

SELECT ?A WHERE ({

{ ?A rdf:type :Hotel } UNION { ?A rdf:type :Hostel }
}

SELECT ?H WHERE ({

?H rdf:type :Hotel } MINUS { ?H :locatedIn :Prague }
}




PROPERTY PATHS

m Terms can be connected by regular expressions over properties

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#>
PREFIX : <http://skyscanner.net/>
SELECT ?H WHERE ({

?H rdf:type :Hotel ; :inCity/:inCountry :Germany .
}

SELECT ?Cl ?C2 WHERE ({

?Cl rdf:type :Country (:hasLandBorderWith/:hasLandBorderWith?) ?2C2
}

SELECT ?C WHERE ({

?C rdf:type :Country ; :hasLandBorderWith+ :Germany .
}

m Regular expressions support a form of recursion
m Blurs the distinction between reasoning and querying
m Such queries are common in graph databases (e.g., Neo4))




