
Semantic Technology Tutorial

Part 4: Reasoning

Why Ontology Reasoning?
• Support for developing & maintaining ontologies

– Known to be difficult/costly/time-consuming
– Can be a major barrier to uptake of semantic technologies

• Fundamental service provided by semantic systems
– Query answering over data, e.g.

• For semantic data integration
• For compliance verification and reporting

– Schema queries, e.g.
• For selecting components from large inventory
• For identifying relevant advice based on customer profile

– Recall that SPARQL allows for both schema and data
queries, and even combined schema/data queries

Ontology Engineering
• Developing and maintaining quality ontologies is hard

Ontology Engineering
• Developing and maintaining quality ontologies is hard
• Reasoners allow domain experts to check if, e.g.:

– classes are consistent (no “obvious” errors)

Ontology Engineering
• Developing and maintaining quality ontologies is hard
• Reasoners allow domain experts to check if, e.g.:

– classes are consistent (no “obvious” errors)
– expected subsumptions hold (consistent with intuitions)

Ontology Engineering
• Developing and maintaining quality ontologies is hard
• Reasoners allow domain experts to check if, e.g.:

– classes are consistent (no “obvious” errors)
– expected subsumptions hold (consistent with intuitions)
– unexpected equivalences hold (unintended synonyms)

º
Banana split Banana sundae

Ontology Engineering
• Developing and maintaining quality ontologies is hard
• Reasoners allow domain experts to check if, e.g.:

– classes are consistent (no “obvious” errors)
– expected subsumptions hold (consistent with intuitions)
– unexpected equivalences hold (unintended synonyms)

• Reasoning also the basis for advanced tools, e.g.:
– Ontology integration/reuse
– Ontology module extraction
– Explanation of (unexpected) inferences
– …

Ontology Engineering: Case Study
SNOMED is BIG − over 400,000 concepts

Ontology Engineering: Case Study
SNOMED is BIG − over 400,000 concepts

Pulmonary Tuberculosis

Pulmonary disease
due to Mycobacteria

inflamatory disorder of
lower respiratory tract

pneumonitis

found in lung structure

Ontology Engineering: Case Study
• Kaiser Permanente extending SNOMED to express,

e.g.:
– non-viral pneumonia (negation)

– infectious pneumonia is caused by a virus or a bacterium
(disjunction)

– double pneumonia occurs in two lungs (cardinalities)

• This is easy in SNOMED-OWL
– but reasoner failed to find expected subsumptions, e.g., that

bacterial pneumonia is a kind of non-viral pneumonia

• Ontology highly under-constrained: need to add
disjointness axioms (at least)
– virus and bacterium must be disjoint

Ontology Engineering: Case Study
• Adding disjointness led to surprising results

– many classes become inconsistent, e.g., percutanious
embolization of hepatic artery using fluoroscopy guidance

• Cause of inconsistencies identified as class groin
– groin asserted to be subclass of both abdomen and leg

– abdomen and leg are disjoint

– modelling of groin (and other similar “junction” regions)
identified as incorrect

Ontology Engineering: Case Study
• Correct modelling of groin is quite complex, e.g.:

– groin has a part that is part of the abdomen, and has a part
that is part of the leg (inverse properties)

– all parts of the groin are part of the abdomen or the leg
(disjunction)

– ...

Ontology Engineering: Case Study
What we learned:
• Ontology engineering is error prone

– errors of omission (e.g., disjointness) and commission
(e.g., modelling of groin)

• Expressive features of OWL are sometimes needed
• Sophisticated tool support is essential

– handling ontologies of this size is challenging

– domain experts (and logicians!) often need help to understand
the (root) cause of both inconsistencies and non-subsumptions

– surprising and unexplained (non-) inferences are frustrating for
users and may cause them to lose faith in the ontology and/or
reasoner

How to provide reasoning services?

How to provide reasoning services?
Recall what we said about semantics:

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the
relationship between statements in the logic and the

existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, in order to specify, build
and test (ontology-based) tools/systems we
need to precisely define relationships (like

entailment) between logical statements – this
defines the intended behaviour of tools/systems.

DL Semantics: Reasoning Problems

DL Semantics: Reasoning Problems
\bigskip\noindent

• Most ontologies use OWL ontology language
• OWL based on description logic SROIQ
✔Rich schema language
✔Clear semantics
✔Well understood computational properties

(e.g., decidability, complexity)
✘ N2ExpTime-comlete combined complexity
✘ NP-hard data complexity (-v- AC0 for databases)

Can we provide (empirically) scalable reasoning?

Theory Practice

Various Approaches & Tradeoffs
1 Use full power of OWL and a complete reasoner:

P Well-suited for modeling complex domains

P Reliable answers

O High worst-case complexity

O Scalability problems for large ontologies & datasets

Complete OWL reasoners:
• E.g., FaCT++, HermiT, Pellet, ...

• Based on (hyper)tableau (model construction) theorem provers

• Highly optimised implementations effective on many ontologies

Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”

• OWL 2 EL
– Based on EL++

– PTime-complete for combined and data complexity

• OWL 2 QL
– Based on DL-Lite
– AC0 data complexity (same as DBs)

• OWL 2 RL
– Based on “Description Logic Programs” ()
– PTime-complete for combined and data complexity

Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

P Tractable query answering

P Reliable answers (for inputs in the profile)

O Restricted expressivity of the ontology language

O Reasoners reject inputs outside profile

OWL 2 EL reasoners:
• E.g., CEL, ELK, ...

• Based on “consequence based” (deduction) theorem provers

• Target HCLS applications where many ontologies are (mainly)
in the EL profile

• Usually support only schema reasoning (no query answering)

Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

P Tractable query answering

P Reliable answers (for inputs in the profile)

O Restricted expressivity of the ontology language

O Reasoners reject inputs outside profile

OWL 2 QL reasoners:
• E.g., Ontop, Mastro, ...

• Based on query rewriting

• Target applications where focus is query answering

• Data remains in RDBMs, but need ontology + mappings

Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

P Tractable query answering

P Reliable answers (for inputs in the profile)

O Restricted expressivity of the ontology language

O Reasoners reject inputs outside profile

OWL 2 RL reasoners:
• E.g., RDFox, Oracle, Sesame, Jena, OWLim, ...

• Often use chase-like materialisation techniques

• Widely used in practice to reason with large datasets

• Often incomplete even for RL (but RDFox is complete)

Various Approaches & Tradeoffs
3 Use full power of OWL and incomplete reasoner:

P Well-suited for modeling complex domains

P Favourable scalability properties

P Flexibility: no inputs rejected

O Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners often used in this way:
• Accept any input but materialise only some entailed facts

• No way to know which if any entailments are missing (but see
“Measuring & Repairing Incompleteness”)

• Incompleteness can easily turn into unsoundness, e.g., via
negation or aggregation

Tableau Reasoning

Tableau Algorithms

§ Transform entailment to KB (in)consistency
§ K ² a:C iff K [{a:(¬C)} is not consistent (for new a)
§ K ² C v D iff K [{a:(C u ¬D)} is not consistent (for new a)

§ Start with facts explicitly asserted in ABox
e.g., a:(C u ¬D)

§ Use expansion rules to derive new ABox facts
e.g., a:C, a:¬D

§ Construction fails if obvious contradiction (clash)
e.g., a:C, a:¬C

Tableau Algorithms

§ ABox is fully expanded if no more rules can be applied

§ KB is consistent if there is some way to apply the rules so as to
obtain a fully expanded and clash free Abox

§ Use backtracking search to explore all possible expansions
§ Fully expanded clash free ABox closely corresponds to model of KB

§ KB is inconsistent if all possible expansions lead to a clash

Expansion Rules for ALC

§ some rules are nondeterministic, e.g., t, ·
§ implementations use backtracking search

Tableau Example

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff
KB [{x:(HeartDisease u ¬VascularDisease)} is not satisfiable

§ Algorithm tries to construct (an abstraction of) a model

Note similarity to chase!

Termination

§ Simplest DLs are naturally terminating
§ Rules produce strictly smaller concepts

§ Most DLs require some form of blocking
§ E.g., {Person v 9hasParent.Person, John:Person}

§ Expressive DLs need more complex blocking

Correctness

A decision procedure for KB consistency

Will always give an answer, and will always give the right answer
i.e., it is correct (sound and complete) and terminating

Sound: if clash-free ABox is constructed, then KB is consistent

Given fully expanded clash-free ABox, we can trivially construct a model

Complete: if KB is consistent, then clash-free ABox is constructed

Given a model, we can use it to guide application of non-deterministic rules

Terminating: the algorithm will always produce an answer

Upper bound on number of new individuals we can create,
so ABox construction will always terminate

Highly Optimised Implementations

§ Lazy unfolding (used in above example)
§ Simplification and rewriting

§ Absorption:
§ Detection of tractable fragments (EL)
§ Fast semi-decision procedures

§ Told subsumer, model merging, …
§ Search optimisations

§ Dependency directed backtracking
§ Reuse of previous computations

§ Of (un)satisfiable sets of concepts (conjunctions)
§ Heuristics

§ Ordering don’t know and don’t care non-determinism

Tableau — Issues

1 Complexity
§ Problem has inherently high worst case complexity
§ Algorithms typically not optimal even w.r.t. worst case complexity

2 Scalability
§ Highly optimised implementations often effective in practice (for

schema reasoning)
§ But one-by-one entailment checking can be problematical with very

large ontologies
§ Unclear how to extend one-by-one entailment checking approach to

support scalable query answering

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

Hypertableau Reasoning

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83

Consequence Based Reasoning

Consequence Based — How Does It Work?

§ Normalise ontology axioms to standard form:

§ Saturate using inference rules (for EL):

§ Extension to EL++ requires (many) more rules

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Consequence Based — Example

Correctness

A decision procedure for classification

Will always give an answer, and will always give the right answer
i.e., it is correct (sound and complete) and terminating

Sound: if C v D is derived, then KB entails C v D

Completion rules are locally correct (preserve entailments)

Complete: if C v D is entailed by KB, then C v D is derived

Completion rules cover all cases

Terminating: the algorithm will always produce an answer

Upper bound on number of axioms of the form C v D or C v 9r.D,
so completion will always “saturate”

Consequence-Based — Issues

1 Expressivity
§ Existing systems mainly focus on EL profile
§ Prototypical extensions to SHIQ, but not yet clear how well they will

work in practice

2 Scalability
§ Existing systems support only schema reasoning
§ Unclear how to extend the approach to support scalable query

answering

Query Rewriting

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset
§ Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q0 into a DB query

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset
§ Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q0 into a DB query
§ Evaluate (SQL) query against DB

Pipelines from
oil facilities?

Pipelines from
oil facilities?

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1, :p2, :p3

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

map

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

map

select Pipeline.ID from Pipeline, . . .
where Pipeline.From = Facility.ID and . . .
UNION
select ID from Pipeline
where Oil = ”Y”

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

map

select Pipeline.ID from Pipeline, . . .
where Pipeline.From = Facility.ID and . . .
UNION
select ID from Pipeline
where Oil = ”Y”

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Correctness

§ Rewriting can be shown to be correct
i.e.,

§ Query answer is correct iff system used to compute
is correct

§ i.e., if DBMS is sound complete and terminating

Query Rewriting — Issues

1 Rewriting
§ May be large (worst case exponential in size of ontology)

§ Queries may be hard for existing DBMSs

2 Mappings
§ May be difficult to develop and maintain

3 Expressivity
§ OWL 2 QL (necessarily) has (very) restricted expressive power, e.g.:

§ No functional or transitive properties

§ No universal (for-all) restrictions

§ …

Materialisation Based Reasoning

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
§ Materialise (RDF) data DB ® DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

Materialisation — How Does It Work?

Given (RDF) data DB, ontology O and query Q:
§ Materialise (RDF) data DB ® DB0 s.t. evaluating Q w.r.t. DB0

equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

§ EvaluateQ against DB0

Materialisation — Example

9treats.PatientvDoctor

ConsulatantvDoctor

Materialisation — Example

DB

9treats.PatientvDoctor

ConsulatantvDoctor

Materialisation — Example

DB

9treats.PatientvDoctor

ConsulatantvDoctor

Materialisation — Example

DB

9treats.PatientvDoctor

ConsulatantvDoctor

treats(x, y) ^ Patient(y)!Doctor(x)
Consulatant(x)!Doctor(x)

Materialisation — Example

DB DB0

9treats.PatientvDoctor

ConsulatantvDoctor

treats(x, y) ^ Patient(y)!Doctor(x)
Consulatant(x)!Doctor(x)

Materialisation — Example

DB DB0

9treats.PatientvDoctor

ConsulatantvDoctor

treats(x, y) ^ Patient(y)!Doctor(x)
Consulatant(x)!Doctor(x)

Materialisation — Example

DB DB0

Materialisation — Issues

1 Scalability
§ Ptime complete

§ Efficiently implementable in practice?

2 Updates
§ Additions relatively easy (continue materialisation)

§ But what about retraction?

3 Migrating data to RDF
§ Materialisation assumes data in “special” (RDF triple) store

§ How can legacy data be migrated?

4 Expressivity
§ ; in particular, no RHS existentials (aka TGDs)

Materialisation: Scalability

§ Efficient Datalog/RL engine is critical

§ Existing approaches mainly target distributed “shared-nothing”
architectures, often via map reduce

§ High communication overhead

§ Typically focus on small fragments (e.g., RDFS), so don’t really address
expressivity issue

§ Even then, query answering over (distributed) materialized data is non-
trivial and may require considerable communication

RDFox Datalog Engine

§ Targets SOTA main-memory, mulit-core architecture
§ Optimized in-memory storage with ‘mostly’ lock-free parallel inserts

§ Memory efficient: commodity server with 128 GB can store >109 triples

§ Exploits multi-core architecture: 10-20 x speedup with 32/16 threads/cores

§ LUBM 120K (>1010 triples) in 251s (20M t/s) on T5-8 (4TB/1024 threads)

RDFox Datalog Engine

§ Incremental addition and retraction of triples
§ Retraction via novel FBF “view maintenance” algorithm

§ Retraction of 5,000 triples from materialised LUBM 50k in less than 1s

§ Many other novel features
§ Handles more general (than RL) Dalalog and SWRL rules

§ SPARQL features such as BIND and FILTER in rule bodies

§ Native equality handling (owl:sameAs) via rewriting

§ Stratified negation as failure (NAF)

Materialisation: Data Migration

§ Need to specify a suitable migration process
§ Use R2RML mappings to extract data and transform into RDF
§ But where do these mappings come from?

§ Recall query rewriting:
§ Mappings M are R2RML mappings
§ Run mappings in reverse to extract

and transform data

§ “Lazy ETL”
§ Deploy query rewriting (OBDA) system
§ Extend O and M as needed
§ Use M to ETL data into RDF store

Materialisation: Expressivity

§ RL is more powerful than QL, but

§ In particular, no RHS existentials (aka TGDs)

§ Can’t express, e.g.,

§ Recall OWL 2 EL
§ Based on EL++

§ Implementable via Datalog query answering plus “filtration”

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximate O into
Datalog program D

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximate O into
Datalog program D

§ EvaluateQ over D + Data Set
(via materialisation)

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximate O into
Datalog program D

§ EvaluateQ over D + Data Set
(via materialisation)

§ Use (polynomial) Filtering Procedure
to eliminate spurious answers

Materialisation: Expressivity

§ Materialisation based reasoning complete for OWL 2 RL profile

§ Easily (and often) applied to ontologies outside the profile, but:
§ Reasoning may be incomplete
§ Incompleteness difficult to measure via empirical testing

§ Possible solutions offered by recent work:

§ Measuring and repairing incompleteness

§ Chase materialisation

§ Computing upper and lower bounds

Measuring and Repairing Incompleteness

§ Use ontology O (and query Q) to generate a test suite

§ A test suite for O is a pair
§

§

§ A reasoner R passes if:
§

§

Measuring and Repairing Incompleteness

§ Use ontology O (and query Q) to generate a test suite

§ A test suite for O is a pair
§

§

§ A reasoner R passes if:
§

§

Measuring and Repairing Incompleteness

§ Use ontology O (and query Q) to generate a test suite

§ A test suite for O is a pair

§

§

§ A reasoner R passes if:

§

§

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for

Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.

Chase Materialisation

§ Applicable to acyclic ontologies
§ Acyclicity can be checked using, e.g., graph based techniques

(weak acyclicity, joint acyclicity, etc.)
§ Many realistic ontologies turn out to be acyclic

§ Given acyclic ontology O, can apply chase materialisation:
§ Ontology translated into existential rules (aka dependencies)
§ Existential rules can introduce fresh Skolem individuals
§ Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering
in Description Logics. In Proc. of KR 2012.

Chase Materialisation — Example

DB

ß Now an equivalence!

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Chase Materialisation — Example

DB DB0

Skolems

Computing Lower and Upper Bounds

§ RL reasoning w.r.t. OWL ontology O gives lower bound answer L

Computing Lower and Upper Bounds

§ RL reasoning w.r.t. OWL ontology O gives lower bound answer L

§ Transform O into strictly stronger OWL RL ontology
§ Transform ontology into Datalog�,� rules
§ Eliminate � by transforming to �
§ Eliminate existentials by replacing with Skolem constants
§ Discard rules with empty heads
§ Transform rules into OWL 2 RL ontology O’

Computing Lower and Upper Bounds

§ RL reasonting w.r.t. O’ gives (complete but unsound)
upper bound answer U

Computing Upper Bound — Example

DB

Computing Upper Bound — Example

DB

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Upper Bound — Example

DB
DB0

Computing Lower and Upper Bounds

§ RL reasonting w.r.t. O’ gives (complete but unsound)
upper bound answer U

§ If L = U, then both answers are sound and complete
§ If L ≠ U, then U \ L identifies a (small) set of “possible” answers

§ Indicates range of uncertainty

§ Can (more efficiently) check possible answers using, e.g., HermiT

§ Can use U \ L to identify (small) “relevant” subset of data needed to
efficiently compute exact answer

[1] Zhou et al. PAGOdA: Pay-as-you-go Ontology Query Answering Using a Datalog
Reasoner. J. of Artificial Intelligence Research, 54:309-367, 2015.

