
Semantic Technology Tutorial

Part 4: Reasoning



Why Ontology Reasoning?
• Support for developing & maintaining ontologies

– Known to be difficult/costly/time-consuming
– Can be a major barrier to uptake of semantic technologies

• Fundamental service provided by semantic systems
– Query answering over data, e.g.

• For semantic data integration
• For compliance verification and reporting

– Schema queries, e.g.
• For selecting components from large inventory
• For identifying relevant advice based on customer profile

– Recall that SPARQL allows for both schema and data 
queries, and even combined schema/data queries
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Ontology Engineering
• Developing and maintaining quality ontologies is hard
• Reasoners allow domain experts to check if, e.g.:

– classes are consistent (no “obvious” errors)
– expected subsumptions hold (consistent with intuitions)
– unexpected equivalences hold (unintended synonyms)

• Reasoning also the basis for advanced tools, e.g.:
– Ontology integration/reuse
– Ontology module extraction
– Explanation of (unexpected) inferences
– …
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SNOMED is BIG − over 400,000 concepts

Pulmonary Tuberculosis

Pulmonary disease 
due to Mycobacteria

inflamatory disorder of 
lower respiratory tract

pneumonitis

found in lung structure



Ontology Engineering: Case Study
• Kaiser Permanente extending SNOMED to express, 

e.g.:
– non-viral pneumonia (negation)

– infectious pneumonia is caused by a virus or a bacterium
(disjunction)

– double pneumonia occurs in two lungs (cardinalities)

• This is easy in SNOMED-OWL
– but reasoner failed to find expected subsumptions, e.g., that 

bacterial pneumonia is a kind of non-viral pneumonia

• Ontology highly under-constrained: need to add 
disjointness axioms (at least)
– virus and bacterium must be disjoint



Ontology Engineering: Case Study
• Adding disjointness led to surprising results

– many classes become inconsistent, e.g., percutanious 
embolization of hepatic artery using fluoroscopy guidance

• Cause of inconsistencies identified as class groin
– groin asserted to be subclass of both abdomen and leg

– abdomen and leg are disjoint

– modelling of groin (and other similar “junction” regions) 
identified as incorrect



Ontology Engineering: Case Study
• Correct modelling of groin is quite complex, e.g.:

– groin has a part that is part of the abdomen, and has a part 
that is part of the leg (inverse properties)

– all parts of the groin are part of the abdomen or the leg 
(disjunction)

– ... 



Ontology Engineering: Case Study
What we learned:
• Ontology engineering is error prone

– errors of omission (e.g., disjointness) and commission 
(e.g., modelling of groin)

• Expressive features of OWL are sometimes needed
• Sophisticated tool support is essential

– handling ontologies of this size is challenging

– domain experts (and logicians!) often need help to understand 
the (root) cause of both inconsistencies and non-subsumptions

– surprising and unexplained (non-) inferences are frustrating for 
users and may cause them to lose faith in the ontology and/or 
reasoner
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How to provide reasoning services?
Recall what we said about semantics:

Why should I care about semantics? -- In fact I heard that a little goes a long way!

Well, from a philosophical POV, we need to specify the 
relationship between statements in the logic and the 

existential phenomena they describe.

That’s OK, but I don’t get paid for philosophy.

From a practical POV, in order to specify, build 
and test (ontology-based) tools/systems we 
need to precisely define relationships (like 

entailment) between logical statements – this 
defines the intended behaviour of tools/systems.
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\bigskip\noindent



• Most ontologies use OWL ontology language
• OWL based on description logic SROIQ
✔Rich schema language
✔Clear semantics
✔Well understood computational properties

(e.g., decidability, complexity)
✘ N2ExpTime-comlete combined complexity
✘ NP-hard data complexity (-v- AC0 for databases)

Can we provide (empirically) scalable reasoning?

Theory        Practice



Various Approaches & Tradeoffs
1 Use full power of OWL and a complete reasoner:

P Well-suited for modeling complex domains 

P Reliable answers

O High worst-case complexity 

O Scalability problems for large ontologies & datasets

Complete OWL reasoners:
• E.g., FaCT++, HermiT, Pellet, ...

• Based on (hyper)tableau (model construction) theorem provers

• Highly optimised implementations effective on many ontologies



Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”

• OWL 2 EL
– Based on EL++

– PTime-complete for combined and data complexity

• OWL 2 QL
– Based on DL-Lite
– AC0 data complexity (same as DBs)

• OWL 2 RL
– Based on “Description Logic Programs” (                   )
– PTime-complete for combined and data complexity



Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

P Tractable query answering

P Reliable answers (for inputs in the profile)

O Restricted expressivity of the ontology language

O Reasoners reject inputs outside profile

OWL 2 EL reasoners:
• E.g., CEL, ELK, ...

• Based on “consequence based” (deduction) theorem provers

• Target HCLS applications where many ontologies are (mainly) 
in the EL profile

• Usually support only schema reasoning (no query answering)
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2 Use a suitable “profile” and specialised reasoner:

P Tractable query answering

P Reliable answers (for inputs in the profile)

O Restricted expressivity of the ontology language

O Reasoners reject inputs outside profile

OWL 2 QL reasoners:
• E.g., Ontop, Mastro, ...

• Based on query rewriting

• Target applications where focus is query answering

• Data remains in RDBMs, but need ontology + mappings



Various Approaches & Tradeoffs
2 Use a suitable “profile” and specialised reasoner:

P Tractable query answering

P Reliable answers (for inputs in the profile)

O Restricted expressivity of the ontology language

O Reasoners reject inputs outside profile

OWL 2 RL reasoners:
• E.g., RDFox, Oracle, Sesame, Jena, OWLim, ...

• Often use chase-like materialisation techniques

• Widely used in practice to reason with large datasets

• Often incomplete even for RL (but RDFox is complete)



Various Approaches & Tradeoffs
3 Use full power of OWL and incomplete reasoner:

P Well-suited for modeling complex domains 

P Favourable scalability properties

P Flexibility: no inputs rejected

O Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners often used in this way:
• Accept any input but materialise only some entailed facts

• No way to know which if any entailments are missing (but see 
“Measuring & Repairing Incompleteness”)

• Incompleteness can easily turn into unsoundness, e.g., via 
negation or aggregation



Tableau Reasoning



Tableau Algorithms

§ Transform entailment to KB (in)consistency
§ K ² a:C  iff  K [ {a:(¬C)} is not consistent (for new a)
§ K ² C v D  iff  K [ {a:(C u ¬D)} is not consistent (for new a)

§ Start with facts explicitly asserted in ABox
e.g., a:(C u ¬D)

§ Use expansion rules to derive new ABox facts
e.g., a:C, a:¬D

§ Construction fails if obvious contradiction (clash)
e.g., a:C, a:¬C



Tableau Algorithms

§ ABox is fully expanded if no more rules can be applied

§ KB is consistent if there is some way to apply the rules so as to 
obtain a fully expanded and clash free Abox

§ Use backtracking search to explore all possible expansions
§ Fully expanded clash free ABox closely corresponds to model of KB

§ KB is inconsistent if all possible expansions lead to a clash



Expansion Rules for ALC

§ some rules are nondeterministic, e.g., t, ·
§ implementations use backtracking search



Tableau Example
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Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff 
KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable 

§ Algorithm tries to construct (an abstraction of) a model
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Tableau Example

Standard technique based on (hyper-) tableau
§ Reasoning tasks reducible to (un)satisfiability

§ E.g., KB ² HeartDisease v VascularDisease iff 
KB [ {x:(HeartDisease u ¬VascularDisease)} is not satisfiable 

§ Algorithm tries to construct (an abstraction of) a model

Note similarity to chase!



Termination

§ Simplest DLs are naturally terminating
§ Rules produce strictly smaller concepts

§ Most DLs require some form of blocking
§ E.g., {Person v 9hasParent.Person, John:Person}

§ Expressive DLs need more complex blocking



Correctness

A decision procedure for KB consistency

Will always give an answer, and will always give the right answer
i.e., it is correct (sound and complete) and terminating

Sound: if clash-free ABox is constructed, then KB is consistent

Given fully expanded clash-free ABox, we can trivially construct a model 

Complete: if KB is consistent, then clash-free ABox is constructed

Given a model, we can use it to guide application of non-deterministic rules

Terminating: the algorithm will always produce an answer

Upper bound on number of new individuals we can create, 
so ABox construction will always terminate



Highly Optimised Implementations

§ Lazy unfolding (used in above example)
§ Simplification and rewriting

§ Absorption: 
§ Detection of tractable fragments (EL)
§ Fast semi-decision procedures

§ Told subsumer, model merging, …
§ Search optimisations

§ Dependency directed backtracking
§ Reuse of previous computations

§ Of (un)satisfiable sets of concepts (conjunctions)
§ Heuristics

§ Ordering don’t know and don’t care non-determinism



Tableau — Issues

1 Complexity
§ Problem has inherently high worst case complexity
§ Algorithms typically not optimal even w.r.t. worst case complexity

2 Scalability
§ Highly optimised implementations often effective in practice (for 

schema reasoning)
§ But one-by-one entailment checking can be problematical with very 

large ontologies
§ Unclear how to extend one-by-one entailment checking approach to 

support scalable query answering



OWL

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure
Decides truth/falsehood
No direct answer retrieval

Disjunctions produce alternatives
Explore via backtracking

EXAMPLE

:Country v 9:headedBy.(:King t :President)
:Kingdom v :Country u 8:headedBy.:King

:King u :President v ?
:King v :Monarch

:Country u 9:headedBy.:Monarch v :Monarchy

Goal: prove that every kingdom is a monarchy!

:a

:Kingdom

rdf:type

:Country

rdf:type

:x:headedBy

:President

rdf:type

:King

rdf:type

:Monarch

rdf:type

:Monarchy

rdf:type

B. Motik An Introduction to Semantic Technologies 67/83
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Consequence Based Reasoning



Consequence Based — How Does It Work?

§ Normalise ontology axioms to standard form:

§ Saturate using inference rules (for EL):

§ Extension to EL++ requires (many) more rules



Consequence Based — Example
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Correctness

A decision procedure for classification

Will always give an answer, and will always give the right answer
i.e., it is correct (sound and complete) and terminating

Sound: if C v D is derived, then KB entails C v D

Completion rules are locally correct (preserve entailments) 

Complete: if C v D is entailed by KB, then C v D is derived

Completion rules cover all cases

Terminating: the algorithm will always produce an answer

Upper bound on number of axioms of the form C v D or C v 9r.D, 
so completion will always “saturate”



Consequence-Based — Issues

1 Expressivity
§ Existing systems mainly focus on EL profile
§ Prototypical extensions to SHIQ, but not yet clear how well they will 

work in practice

2 Scalability
§ Existing systems support only schema reasoning
§ Unclear how to extend the approach to support scalable query 

answering



Query Rewriting



OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
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Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset
§ Map ontology queries → DB queries (typically SQL) using 

mappings M to rewrite Q0 into a DB query
§ Evaluate (SQL) query against DB
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(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)
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rewrite
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Pipelines from 
oil facilities?

rewrite

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))



Pipelines from 
oil facilities?

rewrite

map

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))
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rewrite

map

select Pipeline.ID from Pipeline, . . .
where Pipeline.From = Facility.ID and . . .
UNION
select ID from Pipeline
where Oil = ”Y”

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null
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Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...
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SubClassOf(:OilPipeline
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ObjectSomeValuesFrom(:fromFacility :OilFacility)))



Pipelines from 
oil facilities?

rewrite

map

select Pipeline.ID from Pipeline, . . .
where Pipeline.From = Facility.ID and . . .
UNION
select ID from Pipeline
where Oil = ”Y”

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))



Correctness

§ Rewriting can be shown to be correct
i.e.,

§ Query answer is correct iff system used to compute 
is correct

§ i.e., if DBMS is sound complete and terminating 



Query Rewriting — Issues

1 Rewriting
§ May be large (worst case exponential in size of ontology)

§ Queries may be hard for existing DBMSs

2 Mappings
§ May be difficult to develop and maintain

3 Expressivity
§ OWL 2 QL (necessarily) has (very) restricted expressive power, e.g.:

§ No functional or transitive properties

§ No universal (for-all) restrictions

§ …
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equivalent to answering Q w.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

§ EvaluateQ against DB0
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Materialisation — Issues

1 Scalability
§ Ptime complete

§ Efficiently implementable in practice?

2 Updates
§ Additions relatively easy (continue materialisation)

§ But what about retraction?

3 Migrating data to RDF
§ Materialisation assumes data in “special” (RDF triple) store

§ How can legacy data be migrated?

4 Expressivity
§ ; in particular, no RHS existentials (aka TGDs)



Materialisation: Scalability

§ Efficient Datalog/RL engine is critical

§ Existing approaches mainly target distributed “shared-nothing” 
architectures, often via map reduce

§ High communication overhead

§ Typically focus on small fragments (e.g., RDFS), so don’t really address 
expressivity issue 

§ Even then, query answering over (distributed) materialized data is non-
trivial and may require considerable communication



RDFox Datalog Engine

§ Targets SOTA main-memory, mulit-core architecture
§ Optimized in-memory storage with ‘mostly’ lock-free parallel inserts

§ Memory efficient: commodity server with 128 GB can store >109 triples

§ Exploits multi-core architecture: 10-20 x speedup with 32/16 threads/cores

§ LUBM 120K (>1010 triples) in 251s (20M t/s) on T5-8 (4TB/1024 threads)



RDFox Datalog Engine

§ Incremental addition and retraction of triples
§ Retraction via novel FBF “view maintenance” algorithm

§ Retraction of 5,000 triples from materialised LUBM 50k in less than 1s

§ Many other novel features
§ Handles more general (than RL) Dalalog and SWRL rules

§ SPARQL features such as BIND and FILTER in rule bodies

§ Native equality handling (owl:sameAs) via rewriting

§ Stratified negation as failure (NAF)



Materialisation: Data Migration

§ Need to specify a suitable migration process
§ Use R2RML mappings to extract data and transform into RDF
§ But where do these mappings come from?

§ Recall query rewriting:
§ Mappings M are R2RML mappings
§ Run mappings in reverse to extract 

and transform data

§ “Lazy ETL”
§ Deploy query rewriting (OBDA) system
§ Extend O and M as needed
§ Use M to ETL data into RDF store



Materialisation: Expressivity

§ RL is more powerful than QL, but 

§ In particular, no RHS existentials (aka TGDs)

§ Can’t express, e.g., 

§ Recall OWL 2 EL 
§ Based on EL++

§ Implementable via Datalog query answering plus “filtration”



OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:
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OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximate O into 
Datalog program D

§ EvaluateQ over D + Data Set
(via materialisation)

§ Use (polynomial) Filtering Procedure
to eliminate spurious answers



Materialisation: Expressivity

§ Materialisation based reasoning complete for OWL 2 RL profile 

§ Easily (and often) applied to ontologies outside the profile, but:
§ Reasoning may be incomplete
§ Incompleteness difficult to measure via empirical testing

§ Possible solutions offered by recent work:

§ Measuring and repairing incompleteness

§ Chase materialisation

§ Computing upper and lower bounds



Measuring and Repairing Incompleteness

§ Use ontology O (and query Q) to generate a test suite
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Measuring and Repairing Incompleteness

§ Use ontology O (and query Q) to generate a test suite

§ A test suite for O is a pair

§

§

§ A reasoner R passes     if:

§

§

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for 

Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.



Chase Materialisation

§ Applicable to acyclic ontologies
§ Acyclicity can be checked using, e.g., graph based techniques

(weak acyclicity, joint acyclicity, etc.)
§ Many realistic ontologies turn out to be acyclic

§ Given acyclic ontology O, can apply chase materialisation:
§ Ontology translated into existential rules (aka dependencies)
§ Existential rules can introduce fresh Skolem individuals
§ Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering 
in Description Logics. In Proc. of KR 2012.



Chase Materialisation — Example

DB

ß Now an equivalence!
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Computing Lower and Upper Bounds

§ RL reasoning w.r.t. OWL ontology O gives lower bound answer L

§ Transform O into strictly stronger OWL RL ontology
§ Transform ontology into Datalog�,� rules
§ Eliminate � by transforming to �
§ Eliminate existentials by replacing with Skolem constants
§ Discard rules with empty heads
§ Transform rules into OWL 2 RL ontology O’



Computing Lower and Upper Bounds

§ RL reasonting w.r.t. O’ gives (complete but unsound) 
upper bound answer U
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Computing Lower and Upper Bounds

§ RL reasonting w.r.t. O’ gives (complete but unsound) 
upper bound answer U

§ If L = U, then both answers are sound and complete
§ If L ≠ U, then U \ L identifies a (small) set of “possible” answers

§ Indicates range of uncertainty

§ Can (more efficiently) check possible answers using, e.g., HermiT

§ Can use U \ L to identify (small) “relevant” subset of data needed to 
efficiently compute exact answer

[1] Zhou et al. PAGOdA: Pay-as-you-go Ontology Query Answering Using a Datalog 
Reasoner. J. of Artificial Intelligence Research, 54:309-367, 2015.


