Semantic Technology Tutorial

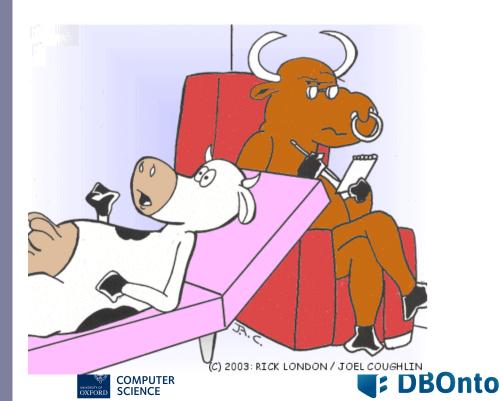
Part 4: Reasoning

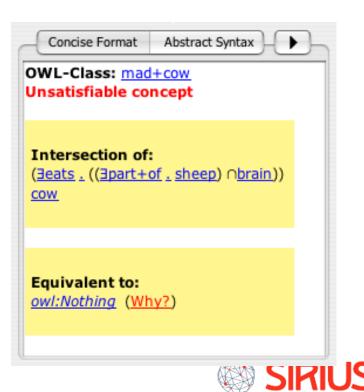
Why Ontology Reasoning?

- Support for developing & maintaining ontologies
 - Known to be difficult/costly/time-consuming
 - Can be a major barrier to uptake of semantic technologies
- Fundamental service provided by semantic systems
 - Query answering over data, e.g.
 - For semantic data integration
 - For compliance verification and reporting
 - Schema queries, e.g.
 - For selecting components from large inventory
 - For identifying relevant advice based on customer profile
 - Recall that SPARQL allows for both schema and data queries, and even combined schema/data queries

Developing and maintaining quality ontologies is *hard*

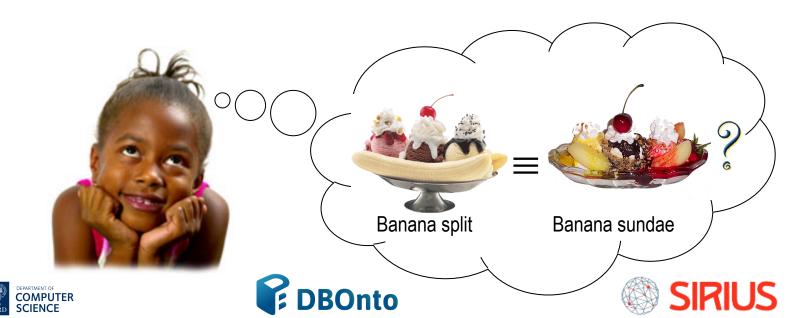
- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 classes are consistent (no "obvious" errors)





- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no "obvious" errors)
 - expected subsumptions hold (consistent with intuitions)

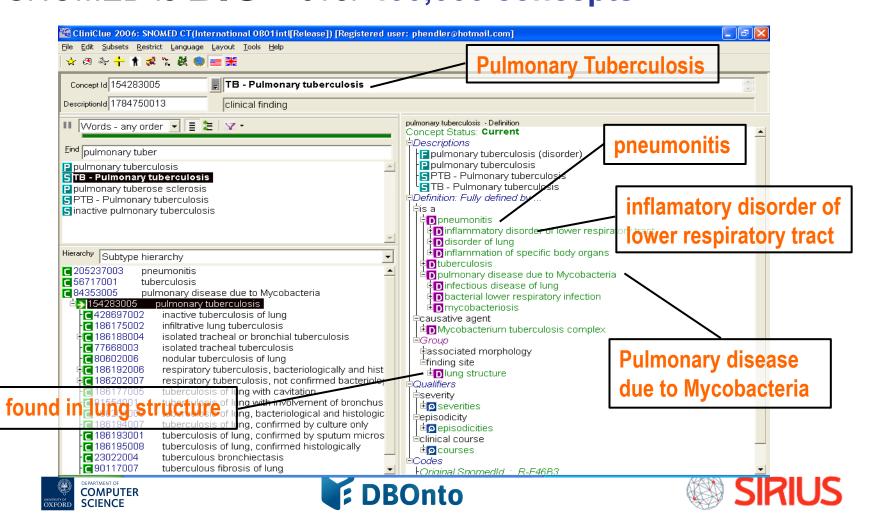
- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no "obvious" errors)
 - expected subsumptions hold (consistent with intuitions)
 - unexpected equivalences hold (unintended synonyms)



- Developing and maintaining quality ontologies is *hard*
- Reasoners allow domain experts to check if, e.g.:
 - classes are consistent (no "obvious" errors)
 - expected subsumptions hold (consistent with intuitions)
 - unexpected equivalences hold (unintended synonyms)
- Reasoning also the basis for advanced tools, e.g.:
 - Ontology integration/reuse
 - Ontology module extraction
 - Explanation of (unexpected) inferences

Ontology Engineering: Case Study SNOMED is **BIG** – over 400,000 concepts

Ontology Engineering: Case Study SNOMED is **BIG** – over 400,000 concepts



- Kaiser Permanente extending SNOMED to express, e.g.:
 - non-viral pneumonia (negation)
 - *infectious pneumonia* is caused by a *virus* or a *bacterium* (disjunction)
 - double pneumonia occurs in two lungs (cardinalities)
- This is easy in **SNOMED-OWL**
 - but reasoner failed to find expected subsumptions, e.g., that bacterial pneumonia is a kind of non-viral pneumonia
- Ontology highly under-constrained: need to add disjointness axioms (at least)

- Adding disjointness led to **surprising results**
 - many classes become inconsistent, e.g., *percutanious embolization of hepatic artery using fluoroscopy guidance*
- Cause of **inconsistencies** identified as class groin
 - groin asserted to be subclass of both abdomen and leg
 - abdomen and leg are disjoint
 - modelling of *groin* (and other similar "junction" regions) identified as incorrect

- Correct modelling of groin is quite complex, e.g.:
 - groin has a part that is part of the abdomen, and has a part that is part of the leg (*inverse properties*)

```
\begin{array}{l} \textsf{Groin} \sqsubseteq \exists \textsf{hasPart.}(\exists \textsf{isPartOf.Abdomen})) \\ \textsf{Groin} \sqsubseteq \exists \textsf{hasPart.}(\exists \textsf{isPartOf.Leg}) \\ \textsf{hasPart} \equiv \textsf{isPartOf}^- \end{array}
```

all parts of the groin are part of the abdomen or the leg (disjunction)

 $\mathsf{Groin} \sqsubseteq \forall \mathsf{hasPart.}(\exists \mathsf{isPartOf.}(\mathsf{Abdomen} \sqcup \mathsf{Leg}))$

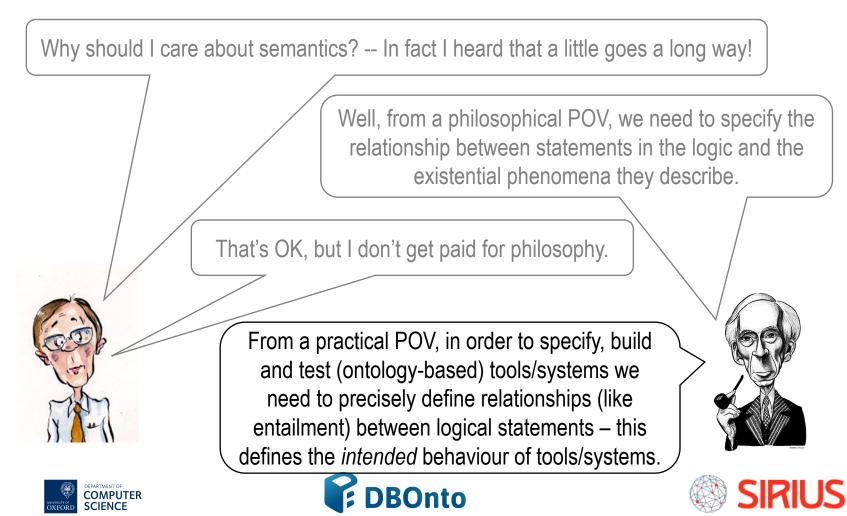
What we learned:

- Ontology engineering is error prone
 - errors of omission (e.g., disjointness) and commission (e.g., modelling of groin)
- **Expressive features** of OWL are sometimes needed
- Sophisticated tool support is **essential**
 - handling ontologies of this size is challenging
 - domain experts (and logicians!) often need help to understand the (root) cause of both inconsistencies and non-subsumptions
 - surprising and unexplained (non-) inferences are frustrating for users and may cause them to lose faith in the ontology and/or

How to provide reasoning services?

How to provide reasoning services?

Recall what we said about semantics:



DL Semantics: Reasoning Problems

Given a knowledge base \mathcal{K} , and concepts C, D:

- **KB consistency**: \mathcal{K} is consistent if there exists some model M s.t. $M \models \mathcal{K}$
- Concept satisfiability: C is satisfiable w.r.t. \mathcal{K} if there exists a model $M = \langle D, \cdot^{\mathcal{I}} \rangle$ of K with $C^{\mathcal{I}} \neq \emptyset$
- Concept subsumption: C is subsumed by D w.r.t. \mathcal{K} , written $\mathcal{K} \models C \sqsubseteq D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K}
- Axiom entailment: An axiom A is entailed by \mathcal{K} (written $\mathcal{K} \models A$) if for every model M of \mathcal{K} , $M \models A$

DL Semantics: Reasoning Problems

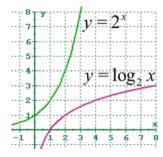
Given a knowledge base \mathcal{K} , and concepts C, D:

- **KB consistency**: \mathcal{K} is consistent if there exists some model M s.t. $M \models \mathcal{K}$
- Concept satisfiability: C is satisfiable w.r.t. \mathcal{K} if there exists a model $M = \langle D, \cdot^{\mathcal{I}} \rangle$ of K with $C^{\mathcal{I}} \neq \emptyset$
- Concept subsumption: C is subsumed by D w.r.t. \mathcal{K} , written $\mathcal{K} \models C \sqsubseteq D$, if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ in every model \mathcal{I} of \mathcal{K}
- Axiom entailment: An axiom A is entailed by \mathcal{K} (written $\mathcal{K} \models A$) if for every model M of \mathcal{K} , $M \models A$
- **CQ answering**: Given a KB \mathcal{K} and a CQ q, compute $cert(q, \mathcal{K})$

indent

Theory ~> **Practice**

- Most ontologies use **OWL** ontology language
- OWL based on description logic SROIQ
 - Rich schema language
 - Clear semantics
 - Well understood computational properties (e.g., decidability, complexity)
 - X N2ExpTime-comlete combined complexity
 - X NP-hard data complexity (-v- AC⁰ for databases)



Can we provide (empirically) scalable reasoning?

- 1 Use full power of OWL and a complete reasoner:
- $\checkmark\,$ Well-suited for modeling complex domains
- ✓ Reliable answers
- High worst-case complexity
- Scalability problems for large ontologies & datasets

Complete OWL reasoners:

- E.g., FaCT++, HermiT, Pellet, ...
- Based on (hyper)tableau (model construction) theorem provers
- Highly optimised implementations effective on many ontologies

2 Use a suitable "profile" and specialised reasoner:

OWL 2 defines language subsets, aka **profiles** that can be "more simply and/or efficiently implemented"

• OWL 2 EL

- Based on *EL*⁺⁺
- PTime-complete for combined and data complexity

• OWL 2 QL

- Based on DL-Lite
- AC⁰ data complexity (same as DBs)

• OWL 2 RL

- Based on "**Description Logic Programs**" (\approx DL \cap LP)
- PTime-complete for combined and data complexity

- **2** Use a suitable "profile" and specialised reasoner:
- ✓ Tractable query answering
- ✓ Reliable answers (for inputs in the profile)
- Restricted expressivity of the ontology language
- Reasoners reject inputs outside profile

OWL 2 EL reasoners:

- E.g., CEL, ELK, ...
- Based on "consequence based" (deduction) theorem provers
- Target HCLS applications where many ontologies are (mainly) in the EL profile
- Usually support only schema reasoning (no query answering)

- 2 Use a suitable "profile" and specialised reasoner:
- ✓ Tractable query answering
- ✓ Reliable answers (for inputs in the profile)
- Restricted expressivity of the ontology language
- Reasoners reject inputs outside profile

OWL 2 QL reasoners:

- E.g., Ontop, Mastro, ...
- Based on query rewriting
- Target applications where focus is query answering
- Data remains in RDBMs, but need ontology + mappings

- 2 Use a suitable "profile" and specialised reasoner:
- ✓ Tractable query answering
- ✓ Reliable answers (for inputs in the profile)
- Restricted expressivity of the ontology language
- Reasoners reject inputs outside profile

OWL 2 RL reasoners:

- E.g., **RDFox**, Oracle, Sesame, Jena, OWLim, ...
- Often use chase-like materialisation techniques
- Widely used in practice to reason with large datasets
- Often incomplete even for RL (but RDFox is complete)

- **3** Use full power of OWL and incomplete reasoner:
- ✓ Well-suited for modeling complex domains
- ✓ Favourable scalability properties
- ✓ Flexibility: no inputs rejected
- Incomplete answers (and degree of incompleteness not known)

OWL 2 RL ontology reasoners often used in this way:

- Accept any input but materialise only some entailed facts
- No way to know which if any entailments are missing (but see "Measuring & Repairing Incompleteness")
- Incompleteness can easily turn into unsoundness, e.g., via negation or aggregation

Tableau Reasoning

Tableau Algorithms

- Transform entailment to KB (in)consistency
 - $\mathcal{K} \models a:C$ iff $\mathcal{K} \cup \{a:(\neg C)\}$ is *not* consistent (for new a)
 - $\mathcal{K} \models C \sqsubseteq D$ iff $\mathcal{K} \cup \{a: (C \sqcap \neg D)\}$ is *not* consistent (for new a)
- Start with facts explicitly asserted in ABox e.g., a:(C □ ¬D)
- Use expansion rules to derive new ABox facts
 e.g., a:C, a:¬D
- Construction fails if obvious contradiction (clash)
 e.g., a:C, a:¬C

Tableau Algorithms

- ABox is fully expanded if no more rules can be applied
- KB is consistent if there is some way to apply the rules so as to obtain a fully expanded and clash free Abox
 - Use backtracking search to explore all possible expansions
 - Fully expanded clash free ABox closely corresponds to model of KB
- KB is inconsistent if all possible expansions lead to a clash

Expansion Rules for \mathcal{ALC}

 $\begin{array}{l} \sqcap \text{-rule: if } 1. \ a: (C_1 \sqcap C_2) \in \mathcal{A}, \text{ and} \\ 2. \ \{a: C_1, a: C_2\} \not\subseteq \mathcal{A} \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{a: C_1, a: C_2\} \\ \\ \sqcup \text{-rule: if } 1. \ a: (C_1 \sqcup C_2) \in \mathcal{A}, \text{ and} \\ 2. \ \{a: C_1, a: C_2\} \cap \mathcal{A} = \emptyset \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{a: C_1\} \text{ and } \mathcal{A}_2 = \mathcal{A} \cup \{a: C_2\} \\ \\ \exists \text{-rule: if } 1. \ a: (\exists S.C) \in \mathcal{A}, \text{ and} \\ 2. \text{ there is no } b \text{ such that } \{\langle a, b \rangle : S, b: C\} \subseteq \mathcal{A}, \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{\langle a, d \rangle : S, d: C\}, \text{ where } d \text{ is new in } \mathcal{A} \\ \\ \forall \text{-rule: if } 1. \ \{a: (\forall S.C), \langle a, b \rangle : S\} \subseteq \mathcal{A}, \text{ and} \\ 2. \ b: C \notin \mathcal{A} \\ \text{ then set } \mathcal{A}_1 = \mathcal{A} \cup \{b: C\} \end{array}$

- some rules are nondeterministic, e.g., \sqcup , \leq
- implementations use backtracking search

 $\label{eq:Heart} \begin{gathered} \mathsf{Heart} \sqsubseteq \mathsf{MuscularOrgan} \sqcap \\ \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \\ \mathsf{HeartDisease} \equiv \mathsf{Disease} \sqcap \\ \exists \mathsf{affects}.\mathsf{Heart} \\ \mathsf{VascularDisease} \equiv \mathsf{Disease} \sqcap \\ \exists \mathsf{affects}.(\exists \mathsf{isPartOf}.\mathsf{CirculatorySystem}) \\ \end{gathered}$

 \models HeartDisease \sqsubseteq VascularDisease ?

Heart \sqsubseteq MuscularOrgan \sqcap $\exists isPartOf.CirculatorySystem$ HeartDisease \equiv Disease \sqcap $\exists affects.Heart$ VascularDisease \equiv Disease \sqcap $\exists affects.(\exists isPartOf.CirculatorySystem)$


```
Heart \sqsubseteq MuscularOrgan \sqcap

\exists isPartOf.CirculatorySystem

HeartDisease \equiv Disease \sqcap

\exists affects.Heart

VascularDisease \equiv Disease \sqcap

\exists affects.(\exists isPartOf.CirculatorySystem)
```


Heart \sqsubseteq MuscularOrgan \sqcap $\exists isPartOf.CirculatorySystem$ HeartDisease \equiv Disease \sqcap $\exists affects.Heart$ VascularDisease \equiv Disease \sqcap $\exists affects.(\exists isPartOf.CirculatorySystem)$

 $x: HeartDisease \sqcap \neg VascularDisease$

x: HeartDisease

Heart \sqsubseteq MuscularOrgan \sqcap $\exists isPartOf.CirculatorySystem$ HeartDisease \equiv Disease \sqcap $\exists affects.Heart$ VascularDisease \equiv Disease \sqcap $\exists affects.(\exists isPartOf.CirculatorySystem)$

- *x*: HeartDisease
- x: Disease
- $x: \exists affects. Heart$

Heart \Box MuscularOrgan \sqcap $\exists isPartOf.CirculatorySystem$ HeartDisease \equiv Disease \sqcap $\exists affects.Heart$ VascularDisease \equiv Disease \sqcap $\exists affects.(\exists isPartOf.CirculatorySystem)$

x: HeartDisease □ ¬VascularDisease *x*: HeartDisease *x*: Disease *x*: ∃affects.Heart


```
Heart \Box MuscularOrgan \sqcap

\exists isPartOf.CirculatorySystem

HeartDisease \equiv Disease \sqcap

\exists affects.Heart

VascularDisease \equiv Disease \sqcap

\exists affects.(\exists isPartOf.CirculatorySystem)
```

: HeartDisease □ ¬VascularDisease
 # : HeartDisease
 # : Disease
 # : ∃affects.Heart
 (x, y) : affects
 y : Heart


```
Heart \Box MuscularOrgan \sqcap

\exists isPartOf.CirculatorySystem

HeartDisease \equiv Disease \sqcap

\exists affects.Heart

VascularDisease \equiv Disease \sqcap

\exists affects.(\exists isPartOf.CirculatorySystem)
```

x: HeartDisease □ ¬VascularDisease x: HeartDisease x: Disease x: ∃affects.Heart (x, y): affects y: Heart


```
Heart \sqsubseteq MuscularOrgan \sqcap

\exists isPartOf.CirculatorySystem

HeartDisease \equiv Disease \sqcap

\exists affects.Heart

VascularDisease \equiv Disease \sqcap

\exists affects.(\exists isPartOf.CirculatorySystem)
```

- x: Heart Disease
- $x: \mathsf{Disease}$
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - y: ∃isPartOf.CirculatorySystem


```
Heart \Box MuscularOrgan \sqcap

\exists isPartOf.CirculatorySystem

HeartDisease \equiv Disease \sqcap

\exists affects.Heart

VascularDisease \equiv Disease \sqcap

\exists affects.(\exists isPartOf.CirculatorySystem)
```

- x: Heart Disease
- $\boldsymbol{x}:\mathsf{Disease}$
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$


```
Heart \Box MuscularOrgan \sqcap

\exists isPartOf.CirculatorySystem

HeartDisease \equiv Disease \sqcap

\exists affects.Heart

VascularDisease \equiv Disease \sqcap

\exists affects.(\exists isPartOf.CirculatorySystem)
```

- x: Heart Disease
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - y: ∃isPartOf.CirculatorySystem
- (y, z): isPartOf
 - z: CirculatorySystem

Heart ⊑ MuscularOrgan ⊓ ∃isPartOf.CirculatorySystem HeartDisease ≡ Disease ⊓ ∃affects.Heart VascularDisease ≡ Disease ⊓ ∃affects.(∃isPartOf.CirculatorySystem)

- x: Heart Disease
- $x: \mathsf{Disease}$
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists is Part Of. Circulatory System$
- (y, z): isPartOf
 - z: CirculatorySystem

Heart ⊑ MuscularOrgan ⊓ ∃isPartOf.CirculatorySystem HeartDisease ≡ Disease ⊓ ∃affects.Heart VascularDisease ≡ Disease ⊓ ∃affects.(∃isPartOf.CirculatorySystem)

x: HeartDisease $\square \neg$ VascularDisease

x: ¬VascularDisease

- *x*: HeartDisease
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists is Part Of. Circulatory System$
- (y, z): isPartOf
 - z: CirculatorySystem


```
Heart ⊑ MuscularOrgan ⊓
                   ∃isPartOf.CirculatorySystem
   HeartDisease \equiv Disease \square
                   Haffects
VascularDisease \equiv Disease \square
                   ∃affects.(∃isPartOf.CirculatorySystem)
```

x: Heart Disease $\square \neg Vascular Disease \qquad x: \neg Vascular Disease$

- x: Heart Disease
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y: Heart
 - y: MuscularOrgan
 - y: ∃isPartOf.CirculatorySystem
- (y, z): isPartOf
 - z: CirculatorySystem


```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: HeartDisease
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z: CirculatorySystem

¬∃affects.(∃isPartOf.CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- $x: HeartDisease \sqcap \neg VascularDisease$
- x: HeartDisease
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z: CirculatorySystem

x : ¬VascularDisease

x : ¬Disease ⊔

¬∃affects.(∃isPartOf.CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: Heart Disease
- $\boldsymbol{x}:\mathsf{Disease}$
- x: ∃affects.Heart
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z: CirculatorySystem

#:¬VascularDisease
#:¬Disease□
¬∃affects.(∃isPartOf.CirculatorySystem)
#:¬Disease

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- $x: HeartDisease \sqcap \neg VascularDisease$
- $x: \mathsf{HeartDisease}$
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z: CirculatorySystem

x:¬VascularDisease x:¬Disease⊔ ¬∃affects.(∃isPartOf.CirculatorySystem) x:¬Disease

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: Heart Disease
- x: Disease
- $x: \exists affects. Heart$
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z: CirculatorySystem

x : ¬Disease ⊔

 $x: \neg VascularDisease$

¬∃affects.(∃isPartOf.CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: HeartDisease
- x : Disease
- x: ∃affects.Heart
- (x, y) : affects
 - $y: \mathsf{Heart}$
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z : CirculatorySystem

#:¬VascularDisease
#:¬Disease□
¬∃affects.(∃isPartOf.CirculatorySystem)
#:¬∃affects.(∃isPartOf.CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: HeartDisease
- x: Disease
- x: ∃affects.Heart
- (x, y) : affects
 - $y: \mathsf{Heart}$
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z : CirculatorySystem

#:¬VascularDisease
#:¬Disease
-¬∃affects.(∃isPartOf.CirculatorySystem)
#:¬∃affects.(∃isPartOf.CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- $x: \mathsf{HeartDisease}$
- x : Disease
- x: ∃affects.Heart
- (x, y) : affects
 - y : Heart
 - y: MuscularOrgan
 - $y: \exists isPartOf.CirculatorySystem$

(y, z): isPartOf

z: CirculatorySystem

#:¬VascularDisease #:¬Disease⊔ ¬∃affects.(∃isPartOf.CirculatorySystem) #:¬∃affects.(∃isPartOf.CirculatorySystem) #:∀affects.(∀isPartOf.¬CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: Heart Disease
- x: Disease
- x: ∃affects.Heart
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists is Part Of. Circulatory System$

(y, z): isPartOf

z : CirculatorySystem

#:¬VascularDisease #:¬Disease⊔ ¬∃affects.(∃isPartOf.CirculatorySystem) #:¬∃affects.(∃isPartOf.CirculatorySystem) #:∀affects.(∀isPartOf.¬CirculatorySystem)

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- $x: HeartDisease \sqcap \neg VascularDisease$
- x: Heart Disease
- x: Disease
- x: ∃affects.Heart
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists is Part Of. Circulatory System$
- (y, z): isPartOf
 - z: CirculatorySystem

x:¬VascularDisease x:¬Disease U ¬∃affects.(∃isPartOf.CirculatorySystem) x:¬∃affects.(∃isPartOf.CirculatorySystem) x:∀affects.(∀isPartOf.¬CirculatorySystem) y:∀isPartOf.¬CirculatorySystem

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: HeartDisease
- x: Disease
- x: ∃affects.Heart
- (x, y) : affects
 - $y: \mathsf{Heart}$
 - y: MuscularOrgan
 - $y: \exists is Part Of. Circulatory System$

(y, z): isPartOf

z : CirculatorySystem

x:¬VascularDisease x:¬Disease⊔ ¬∃affects.(∃isPartOf.CirculatorySystem) x:¬∃affects.(∃isPartOf.CirculatorySystem) x:∀affects.(∀isPartOf.¬CirculatorySystem) y:∀isPartOf.¬CirculatorySystem

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

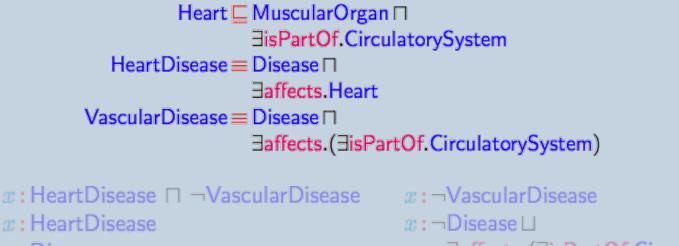
- :: HeartDisease $\sqcap \neg$ VascularDisease
- x: HeartDisease
- x: Disease
- x: ∃affects.Heart
- (x, y) : affects
 - y:Heart
 - y: MuscularOrgan
 - $y: \exists is Part Of. Circulatory System$
- (y, z): isPartOf
 - z : CirculatorySystem

#:¬VascularDisease
#:¬Disease□
¬∃affects.(∃isPartOf.CirculatorySystem)
#:¬∃affects.(∃isPartOf.CirculatorySystem)
#:∀affects.(∀isPartOf.¬CirculatorySystem)
#:∀isPartOf.¬CirculatorySystem
#:¬CirculatorySystem

```
Heart ⊑ MuscularOrgan ⊓
∃isPartOf.CirculatorySystem
HeartDisease ≡ Disease ⊓
∃affects.Heart
VascularDisease ≡ Disease ⊓
∃affects.(∃isPartOf.CirculatorySystem)
```

- :: HeartDisease $\sqcap \neg$ VascularDisease
- $x: \mathsf{HeartDisease}$
- x: Disease
- x: ∃affects.Heart
- (x, y) : affects
 - $y: \mathsf{Heart}$
 - y: MuscularOrgan
 - y: ∃isPartOf.CirculatorySystem
- (y, z): isPartOf
 - z: CirculatorySystem

- #:¬VascularDisease
 #:¬Disease□
 ¬∃affects.(∃isPartOf.CirculatorySystem)
 #:¬∃affects.(∃isPartOf.CirculatorySystem)
 #:∀affects.(∀isPartOf.¬CirculatorySystem)
 #:∀isPartOf.¬CirculatorySystem
- z:¬CirculatorySystem



x: Directe Similarity = affects.(=isPutOf.CirculatorySystem) x: = anote Similarity = affects.(=isPutOf.CirculatorySystem) x: = anote Similarity = affects.(=isPutOf.CirculatorySystem) x: = affects Similarity = affects.(=isPutOf.CirculatorySystem) y): affects x: = affects.(=isPutOf.CirculatorySystem)

(x, y) : affects

y: Heart

y: MuscularOrgan

y: ∃isPartOf.CirculatorySystem

(y, z): isPartOf

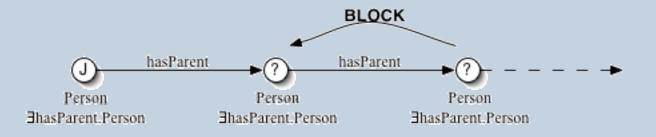
z: CirculatorySystem

y: ∀isPartOf.¬CirculatorySystem

ℤ : ¬CirculatorySystem

Termination

- Simplest DLs are naturally terminating
 - Rules produce strictly smaller concepts
- Most DLs require some form of blocking
 - E.g., {Person ⊑ ∃hasParent.Person, John:Person}



Expressive DLs need more complex blocking

Correctness

A decision procedure for KB consistency

Will always give an answer, and will always give the *right* answer i.e., it is correct (sound and complete) and terminating

Sound: if clash-free ABox is constructed, then KB is consistent

Given fully expanded clash-free ABox, we can trivially construct a model

Complete: if KB is consistent, then clash-free ABox is constructed

Given a model, we can use it to guide application of non-deterministic rules

Terminating: the algorithm will always produce an answer

Upper bound on number of new individuals we can create, so ABox construction will always terminate

Highly Optimised Implementations

- Lazy unfolding (used in above example)
- Simplification and rewriting
 - Absorption: $A \sqcap B \sqsubseteq C \longrightarrow A \sqsubseteq C \sqcup \neg B$
- Detection of tractable fragments (*EL*)
- Fast semi-decision procedures
 - Told subsumer, model merging, …
- Search optimisations
 - Dependency directed backtracking
- Reuse of previous computations
 - Of (un)satisfiable sets of concepts (conjunctions)
- Heuristics
 - Ordering don't know and don't care non-determinism

Tableau — Issues

1 Complexity

- Problem has inherently high worst case complexity
- Algorithms typically not optimal even w.r.t. worst case complexity

2 Scalability

- Highly optimised implementations often effective in practice (for schema reasoning)
- But one-by-one entailment checking can be problematical with very large ontologies
- Unclear how to extend one-by-one entailment checking approach to support scalable query answering

Hypertableau Reasoning

REASONING IN OWL 2 DL VIA (HYPER)TABLEAUX

Proof procedure

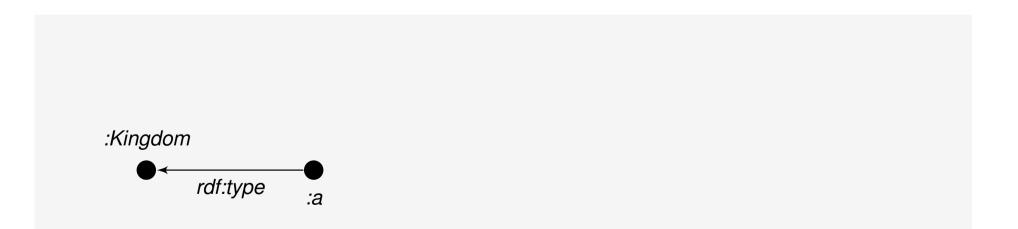
- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE

Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE



Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE

Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE



Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE

Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE

Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

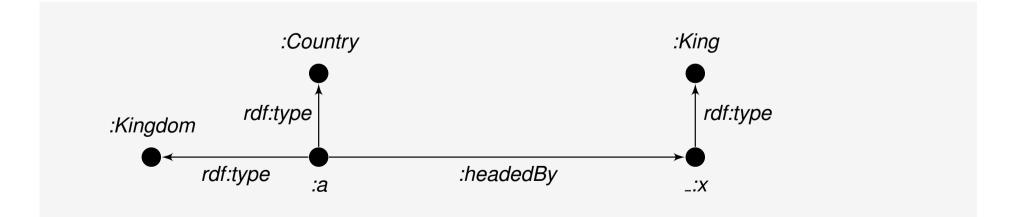
EXAMPLE



Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

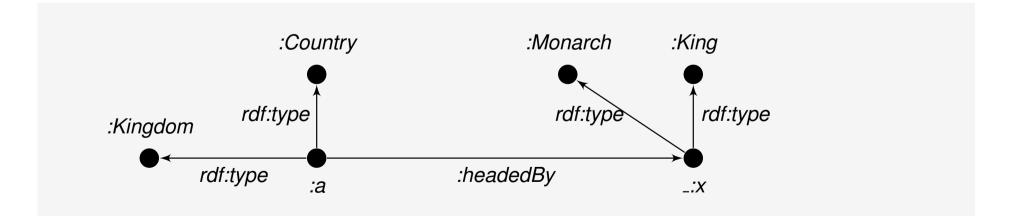
EXAMPLE



Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

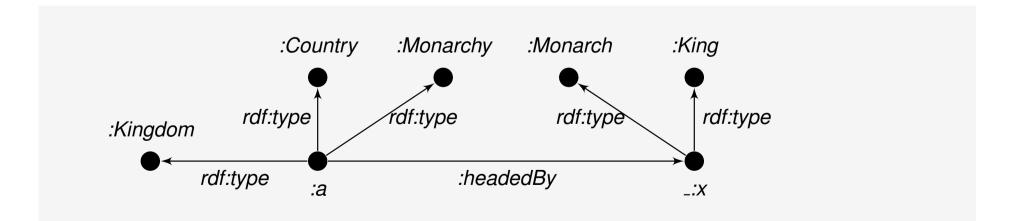
EXAMPLE



Proof procedure

- Decides truth/falsehood
- No direct answer retrieval
- Disjunctions produce alternatives
 - Explore via backtracking

EXAMPLE



Consequence Based Reasoning

Consequence Based — How Does It Work?

• Normalise ontology axioms to standard form:

 $A \sqsubseteq B \quad A \sqcap B \sqsubseteq C \quad A \sqsubseteq \exists R.B \quad \exists R.B \sqsubseteq C$ • Saturate using inference rules (for \mathcal{EL}): $\frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \qquad \frac{A \sqsubseteq B \quad A \sqsubseteq C \quad B \sqcap C \sqsubseteq D}{A \sqsubseteq D}$ $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C \quad \exists R.C \sqsubseteq D}{A \sqsubseteq D}$

• Extension to \mathcal{EL}^{++} requires (many) more rules

 $\begin{aligned} & \mathsf{OrganTransplant} \equiv \mathsf{Transplant} \sqcap \exists \mathsf{site}.\mathsf{Organ} \\ & \mathsf{HeartTransplant} \equiv \mathsf{Transplant} \sqcap \exists \mathsf{site}.\mathsf{Heart} \\ & \mathsf{Heart} \sqsubseteq \mathsf{Organ} \end{aligned}$

 $\models \mathsf{HeartTransplant} \sqsubseteq \mathsf{OrganTransplant} ?$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$

 $HeartTransplant \equiv Transplant \sqcap \exists site.Heart$

Heart ⊑ Organ

OrganTransplant ≡ Transplant $\sqcap \exists$ site.Organ HeartTransplant ≡ Transplant $\sqcap \exists$ site.Heart Heart ⊑ Organ

 $OrganTransplant \sqsubseteq Transplant$ $OrganTransplant \sqsubseteq \exists site.Organ$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$

 $HeartTransplant \equiv Transplant \sqcap \exists site. Heart \\ Heart \sqsubseteq Organ$

OrganTransplant ⊑ Transplant OrganTransplant ⊑ ∃site.Organ ∃site.Organ ⊑ SO

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$

 $HeartTransplant \equiv Transplant \sqcap \exists site. Heart \\ Heart \sqsubseteq Organ$

OrganTransplant ⊑ Transplant OrganTransplant ⊑ ∃site.Organ ∃site.Organ ⊑ SO

 $Transplant \sqcap SO \sqsubseteq OrganTransplant$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$

Heart ⊑ Organ

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq \exists site.Organ \exists site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$

Heart ⊑ Organ

OrganTransplant ⊑ Transplant OrganTransplant ⊑ ∃site.Organ ∃site.Organ ⊑ SO Transplant □ SO ⊑ OrganTransplant HeartTransplant ⊑ Transplant HeartTransplant ⊑ ∃site.Heart

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$

Heart ⊑ Organ

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ \exists site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart \exists site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$

 $Heart \sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ \exists site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart \exists site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$

 $Heart \sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ Site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart SH Transplant \sqcap SH HeartTransplant \sqsubseteq SH Transplant \sqcap SH

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant \equiv Transplant $\sqcap \exists site.$ Heart Heart $\sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ \exists site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart \exists site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ Bisite.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart Bisite.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ

 $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C \quad \exists R.C \sqsubseteq D}{A \sqsubseteq D}$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ Bisite.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart Bisite.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ $\frac{A \sqsubseteq \exists R.B \quad B \sqsubseteq C \quad \exists R.C \sqsubseteq D}{A \sqsubseteq D}$

 $HeartTransplant \sqsubseteq SO$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ Bisite.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart Bisite.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ $\frac{A \sqsubseteq B \quad A \sqsubseteq C \quad B \sqcap C \sqsubseteq D}{A \sqsubseteq D}$

 $HeartTransplant \sqsubseteq SO$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ 3site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart 3site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ $\frac{A \sqsubseteq B \quad A \sqsubseteq C \quad B \sqcap C \sqsubseteq D}{A \sqsubseteq D}$

 $\label{eq:HeartTransplant} \begin{gathered} \sqsubseteq \mathsf{SO} \\ \mathsf{HeartTransplant} \sqsubseteq \mathsf{OrganTransplant} \end{gathered}$

 $OrganTransplant \equiv Transplant \sqcap \exists site.Organ$ HeartTransplant $\equiv Transplant \sqcap \exists site.Heart$ Heart $\sqsubseteq Organ$

OrganTransplant \sqsubseteq Transplant OrganTransplant \sqsubseteq 3site.Organ 3site.Organ \sqsubseteq SO Transplant \sqcap SO \sqsubseteq OrganTransplant HeartTransplant \sqsubseteq Transplant HeartTransplant \sqsubseteq 3site.Heart 3site.Heart \sqsubseteq SH Transplant \sqcap SH \sqsubseteq HeartTransplant Heart \sqsubseteq Organ $HeartTransplant \sqsubseteq SO$

HeartTransplant CorganTransplant

Correctness

A decision procedure for classification

Will always give an answer, and will always give the *right* answer i.e., it is correct (sound and complete) and terminating

Sound: if $C \sqsubseteq D$ is derived, then KB entails $C \sqsubseteq D$

Completion rules are locally correct (preserve entailments)

Complete: if $C \sqsubseteq D$ is entailed by KB, then $C \sqsubseteq D$ is derived

Completion rules cover all cases

Terminating: the algorithm will always produce an answer

Upper bound on number of axioms of the form $C \sqsubseteq D$ or $C \sqsubseteq \exists r.D$, so completion will always "saturate"

Consequence-Based — Issues

1 Expressivity

- Existing systems mainly focus on EL profile
- Prototypical extensions to SHIQ, but not yet clear how well they will work in practice

2 Scalability

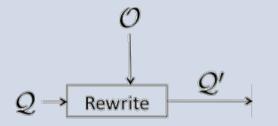
- Existing systems support only schema reasoning
- Unclear how to extend the approach to support scalable query answering

Query Rewriting

Given QL ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

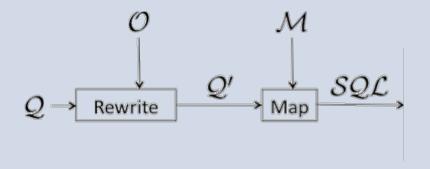
Given QL ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

Use O to rewrite Q → Q' s.t. answering Q' without O is equivalent to answering Q w.r.t. O for any dataset



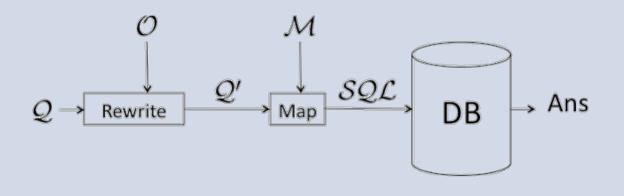
Given QL ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

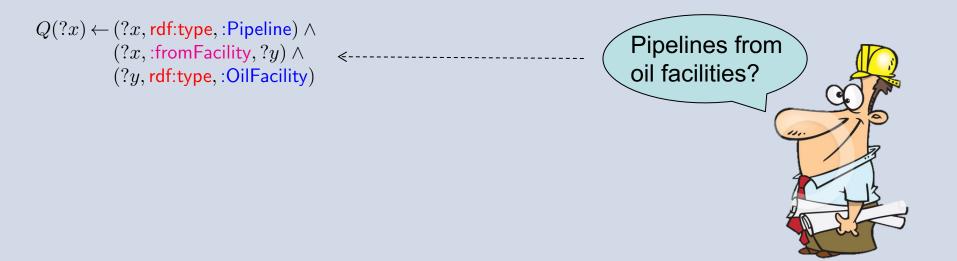
- Use O to rewrite Q → Q' s.t. answering Q' without O is equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query

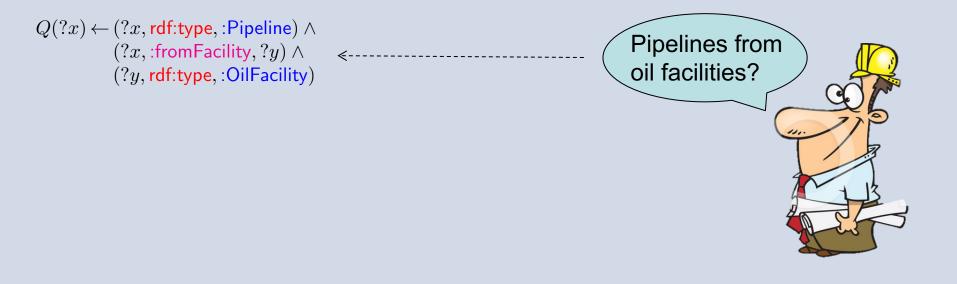


Given QL ontology \mathcal{O} query \mathcal{Q} and mappings \mathcal{M} :

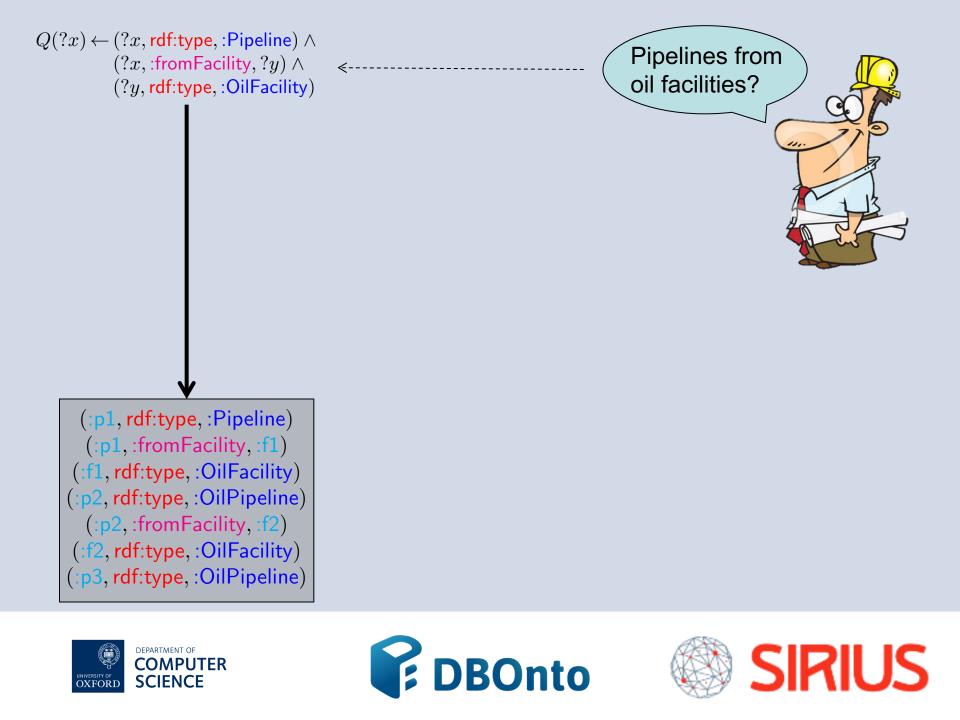
- Use O to rewrite Q → Q' s.t. answering Q' without O is equivalent to answering Q w.r.t. O for any dataset
- Map ontology queries → DB queries (typically SQL) using mappings *M* to rewrite *Q*' into a DB query
- Evaluate (SQL) query against DB

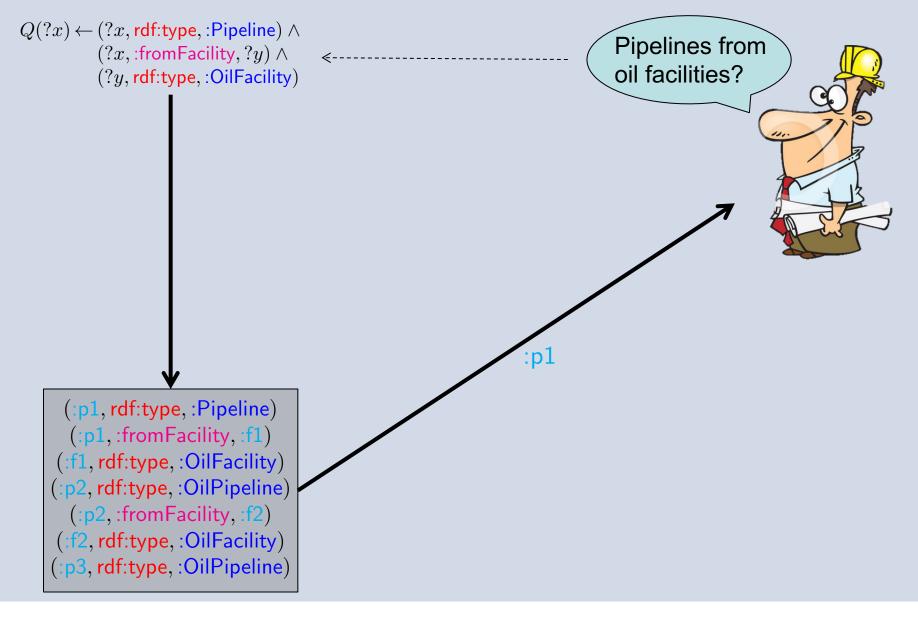


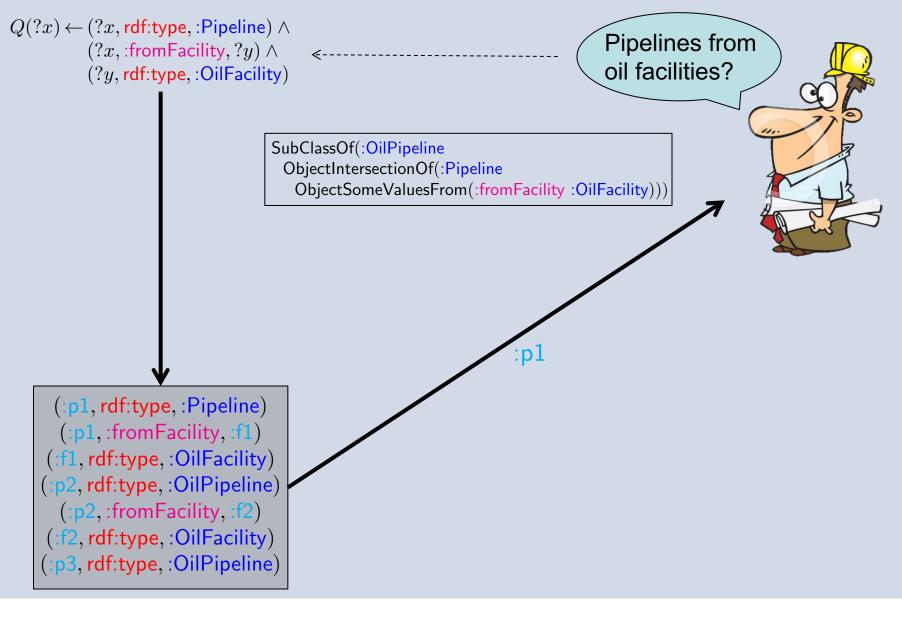


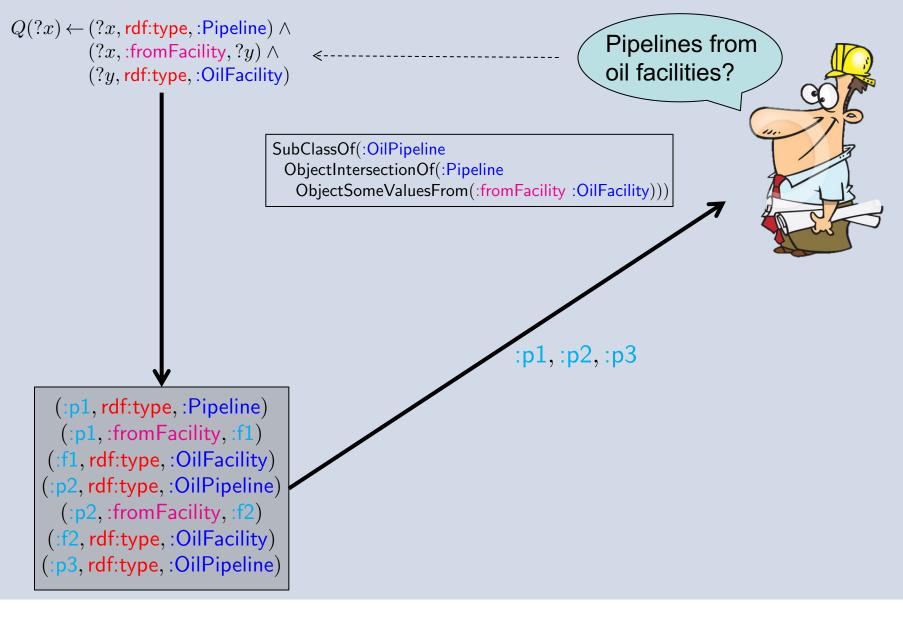


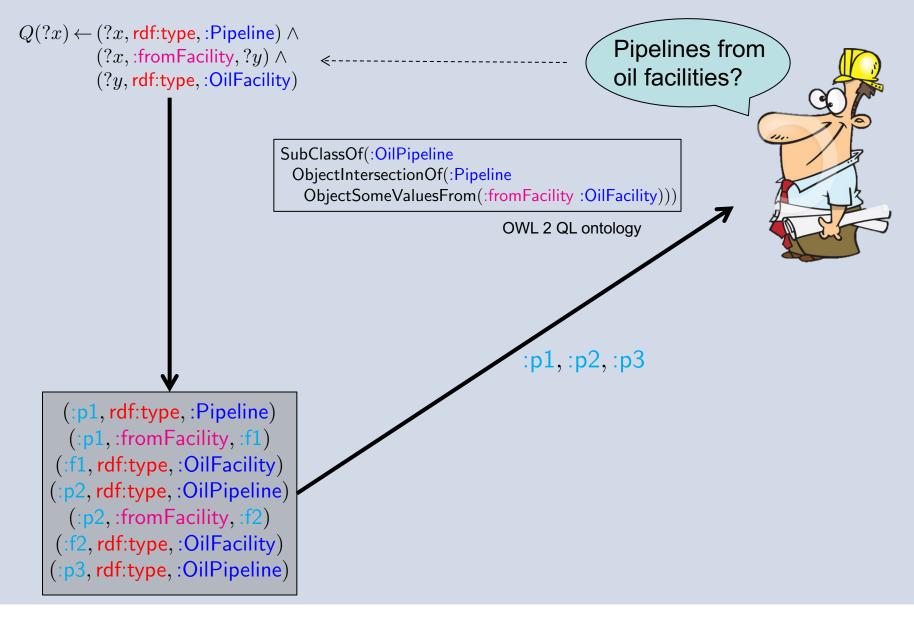
(:p1, rdf:type, :Pipeline) (:p1, :fromFacility, :f1) (:f1, rdf:type, :OilFacility) (:p2, rdf:type, :OilPipeline) (:p2, :fromFacility, :f2) (:f2, rdf:type, :OilFacility) (:p3, rdf:type, :OilPipeline)

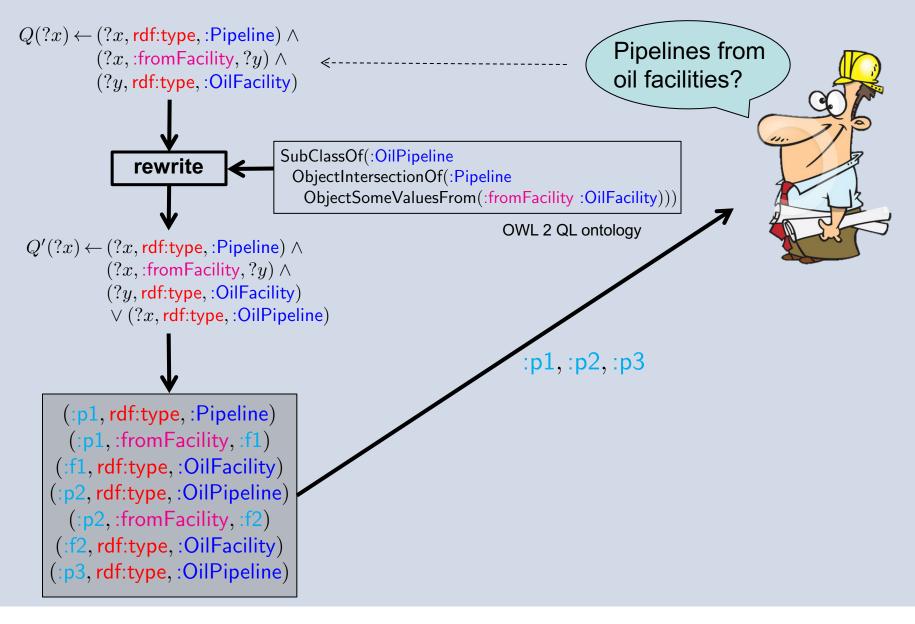


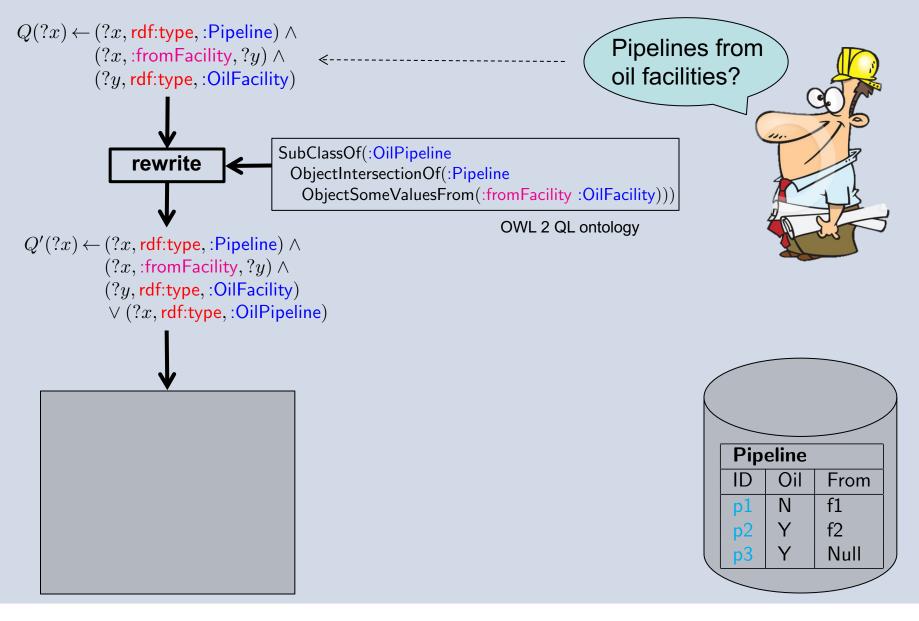


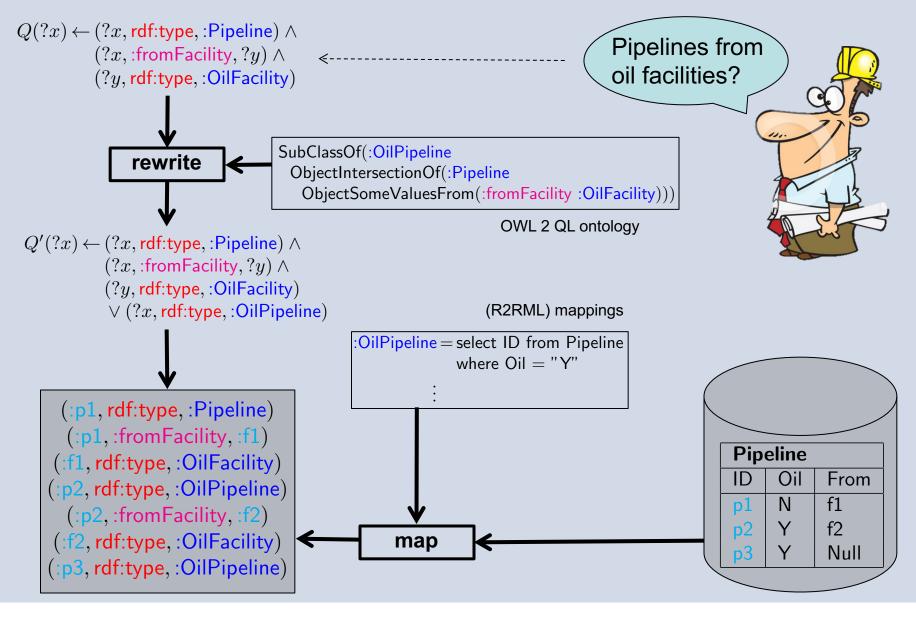


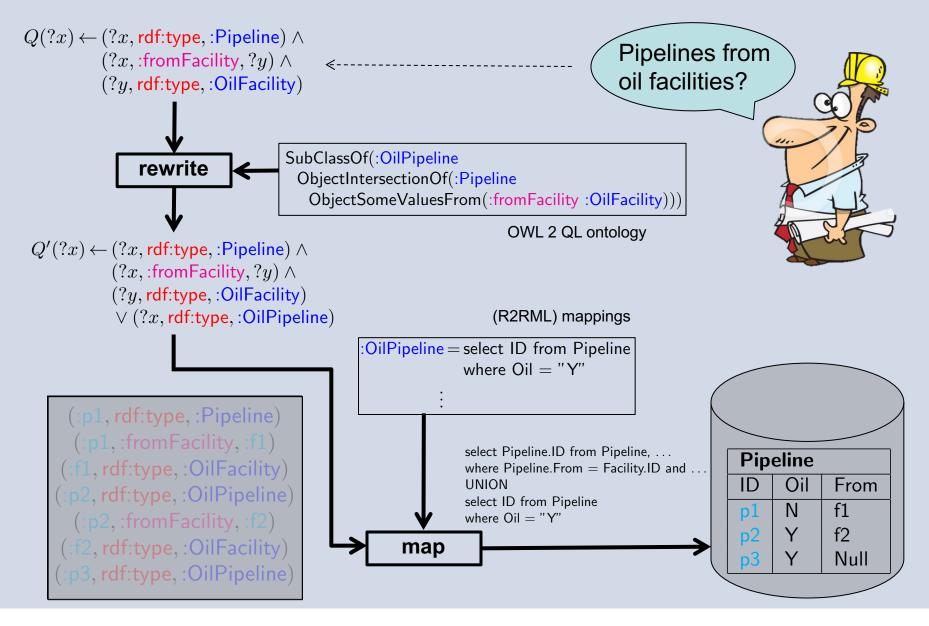


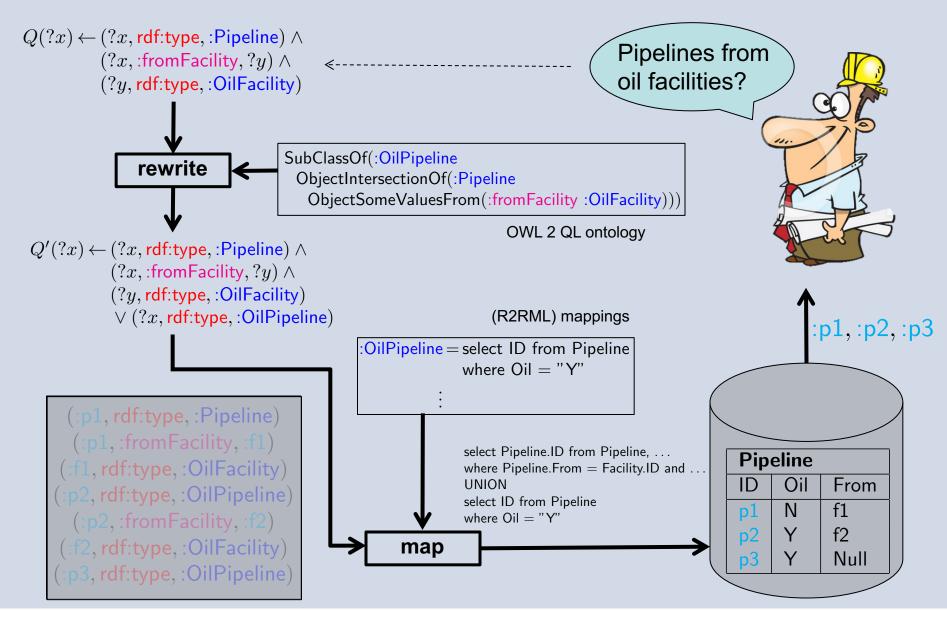












Correctness

Rewriting can be shown to be correct

i.e., $\operatorname{ans}(\mathcal{Q}, \mathcal{O}, \mathsf{DB}) = \operatorname{ans}(\mathcal{Q}', \emptyset, \mathsf{DB})$

- Query answer is correct iff system used to compute ans(Q', Ø, DB) is correct
 - i.e., if DBMS is sound complete and terminating

Query Rewriting — Issues

1 Rewriting

- May be large (worst case exponential in size of ontology)
- Queries may be hard for existing DBMSs

2 Mappings

May be difficult to develop and maintain

3 Expressivity

- OWL 2 QL (necessarily) has (very) restricted expressive power, e.g.:
 - No functional or transitive properties
 - No universal (for-all) restrictions
 - ...

Materialisation Based Reasoning

Materialisation — How Does It Work?

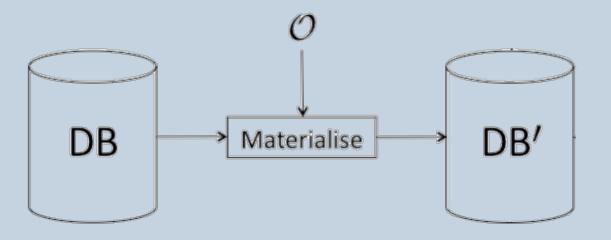
Given (RDF) data DB, ontology \mathcal{O} and query \mathcal{Q} :

Materialisation — How Does It Work?

Given (RDF) data DB, ontology \mathcal{O} and query \mathcal{Q} :

• Materialise (RDF) data DB \rightarrow DB' s.t. evaluating Q w.r.t. DB' equivalent to answering Q w.r.t. DB and O

nb: Closely related to chase procedure used with DB dependencies



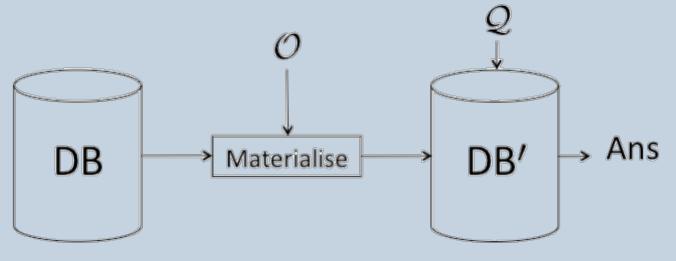
Materialisation — How Does It Work?

Given (RDF) data DB, ontology \mathcal{O} and query \mathcal{Q} :

• Materialise (RDF) data DB \rightarrow DB' s.t. evaluating Q w.r.t. DB' equivalent to answering Q w.r.t. DB and O

nb: Closely related to chase procedure used with DB dependencies

• Evaluate Q against DB'



 $\mathcal{O} \left\{ \begin{array}{l} \exists \mathsf{treats}.\mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$


```
\mathcal{O} \left\{ \begin{array}{c} \exists \mathsf{treats}.\mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.
```

```
\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
```



```
\mathcal{O} \left\{ \begin{array}{l} \exists \mathsf{treats}.\mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.
```

```
\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
```

```
\mathcal{Q}_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)
```


 $\mathcal{O} \left\{ \begin{array}{l} \exists \mathsf{treats}.\mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

 $\frac{\mathsf{treats}(x,y) \land \mathsf{Patient}(y) \to \mathsf{Doctor}(x)}{\mathsf{Consulatant}(x) \to \mathsf{Doctor}(x)}$

```
\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
```

 $\mathcal{Q}_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $\mathcal{O} \left\{ \begin{array}{l} \exists \mathsf{treats}.\mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

 $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$

 $\frac{\mathsf{treats}(x,y) \land \mathsf{Patient}(y) \to \mathsf{Doctor}(x)}{\mathsf{Consulatant}(x) \to \mathsf{Doctor}(x)}$

$$\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$$

$$\mathcal{Q}_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$$

 $\mathcal{O} \left\{ \begin{array}{l} \exists \mathsf{treats}.\mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

 $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$

 $\frac{\mathsf{treats}(x,y) \land \mathsf{Patient}(y) \to \mathsf{Doctor}(x)}{\mathsf{Consulatant}(x) \to \mathsf{Doctor}(x)}$

$$\mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}$$

$$\mathcal{Q}_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$$

 $\rightsquigarrow \qquad \{d_2, d_1, c_1\}$


```
\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.
                                                                                                                                                 \mathsf{DB'} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \\ \frac{\mathsf{Doctor}(d_1)}{\mathsf{Doctor}(c_1)} \end{cases}
       \mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
        Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)
                                                                                                                                                                                   \rightsquigarrow \qquad \{d_2, d_1, c_1\}
        Q_2 \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)
                                                                                                                                                                                  \rightsquigarrow \{d_1\}
```


Materialisation — Issues

1 Scalability

- Ptime complete
- Efficiently implementable in practice?

2 Updates

- Additions relatively easy (continue materialisation)
- But what about retraction?

3 Migrating data to RDF

- Materialisation assumes data in "special" (RDF triple) store
- How can legacy data be migrated?

4 Expressivity

• $QL \not\subseteq RL$; in particular, no RHS existentials (aka TGDs)

Materialisation: Scalability

- Efficient Datalog/RL engine is critical
- Existing approaches mainly target distributed "shared-nothing" architectures, often via map reduce
 - High communication overhead
 - Typically focus on small fragments (e.g., RDFS), so don't really address expressivity issue
 - Even then, query answering over (distributed) materialized data is nontrivial and may require considerable communication

RDFox Datalog Engine

- Targets SOTA main-memory, mulit-core architecture
 - Optimized in-memory storage with 'mostly' lock-free parallel inserts
 - Memory efficient: commodity server with 128 GB can store >10⁹ triples
 - Exploits multi-core architecture: 10-20 x speedup with 32/16 threads/cores
 - LUBM 120K (>10¹⁰ triples) in 251s (20M t/s) on T5-8 (4TB/1024 threads)

RDFox Datalog Engine

- Incremental addition and retraction of triples
 - Retraction via novel FBF "view maintenance" algorithm
 - Retraction of 5,000 triples from materialised LUBM 50k in less than 1s
- Many other novel features
 - Handles more general (than RL) Dalalog and SWRL rules
 - SPARQL features such as **BIND** and **FILTER** in rule bodies
 - Native equality handling (owl:sameAs) via rewriting
 - Stratified negation as failure (NAF)

Materialisation: Data Migration

- Need to specify a suitable **migration** process
 - Use R2RML mappings to extract data and transform into RDF
 - But where do these mappings come from?
- Recall query rewriting:
 - Mappings \mathcal{M} are R2RML mappings
 - Run mappings in reverse to extract and transform data

• "Lazy ETL"

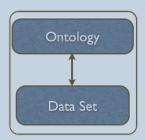
- Deploy query rewriting (OBDA) system
- Extend ${\mathcal O}$ and ${\mathcal M}$ as needed
- Use ${\boldsymbol{\mathcal{M}}}$ to ETL data into RDF store

SIRIUS

Materialisation: Expressivity

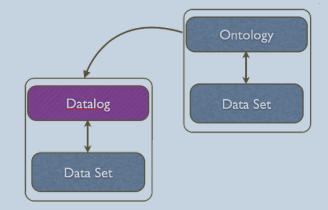
- RL is more powerful than QL, but $QL \not\subseteq RL$
 - In particular, no RHS existentials (aka TGDs)
 - Can't express, e.g., OilPipeline
 Pipeline
 IfromFacility.OilFacility
- Recall OWL 2 EL
 - Based on *EL*⁺⁺
 - Implementable via Datalog query answering plus "filtration"

Given (RDF) Data Set, EL ontology \mathcal{O} and query \mathcal{Q} :



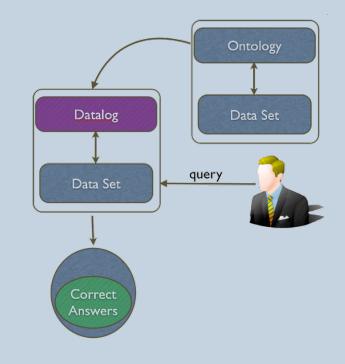
Given (RDF) Data Set, EL ontology \mathcal{O} and query \mathcal{Q} :

 Over-approximate O into Datalog program D



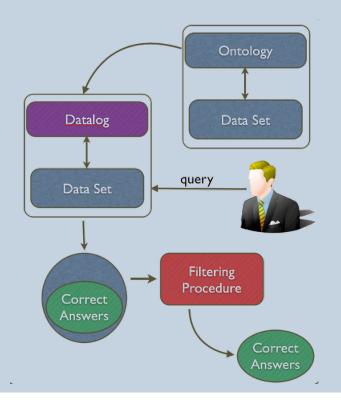
Given (RDF) Data Set, EL ontology \mathcal{O} and query \mathcal{Q} :

- Over-approximate O into Datalog program D
- Evaluate Q over D + Data Set (via materialisation)



Given (RDF) Data Set, EL ontology \mathcal{O} and query \mathcal{Q} :

- Over-approximate O into Datalog program D
- Evaluate Q over D + Data Set (via materialisation)
- Use (polynomial) Filtering Procedure to eliminate spurious answers



Materialisation: Expressivity

- Materialisation based reasoning complete for OWL 2 RL profile
- Easily (and often) applied to ontologies **outside the profile**, but:
 - Reasoning may be incomplete
 - Incompleteness difficult to measure via empirical testing
- Possible solutions offered by recent work:
 - Measuring and repairing incompleteness
 - Chase materialisation
 - Computing upper and lower bounds

Measuring and Repairing Incompleteness

• Use ontology \mathcal{O} (and query \mathcal{Q}) to generate a test suite

Measuring and Repairing Incompleteness

- Use ontology \mathcal{O} (and query \mathcal{Q}) to generate a test suite
- A test suite for ${\cal O}$ is a pair ${f S}=\langle {f S}_{\perp}, {f S}_Q
 angle$
 - \mathbf{S}_{\perp} a set of ABoxes that are unsatisfiable w.r.t. $\mathcal O$
 - S_Q a set of paris $\langle A, Y \rangle$ with A an ABox and Y a query

Measuring and Repairing Incompleteness

- Use ontology \mathcal{O} (and query \mathcal{Q}) to generate a test suite
- A test suite for ${\cal O}$ is a pair ${f S}=\langle {f S}_{\perp},{f S}_Q
 angle$
 - \mathbf{S}_{\perp} a set of ABoxes that are unsatisfiable w.r.t. $\mathcal O$
 - S_Q a set of paris $\langle A, Y \rangle$ with A an ABox and Y a query
- A reasoner \mathcal{R} passes S if:
 - ${\mathcal R}$ finds ${\mathcal O}\cup{\mathcal A}$ unsatisfiable for each ${\mathcal A}\in{\mathbf S}_\perp$
 - \mathcal{R} complete for \mathcal{Y} w.r.t. $\mathcal{O} \cup \mathcal{A}$ for each $\langle \mathcal{A}, \mathcal{Y} \rangle \in \mathbf{S}_Q$

[7] Cuenca Grau, Motik, Stoilos, and Horrocks. Completeness Guarantees for Incomplete Ontology Reasoners: Theory and Practice. JAIR, 43:419-476, 2012.

Chase Materialisation

Applicable to acyclic ontologies

- Acyclicity can be checked using, e.g., graph based techniques (weak acyclicity, joint acyclicity, etc.)
- Many realistic ontologies turn out to be acyclic
- Given acyclic ontology \mathcal{O} , can apply chase materialisation:
 - Ontology translated into existential rules (aka dependencies)
 - Existential rules can introduce fresh Skolem individuals
 - Termination guaranteed for acyclic ontologies

[8] Cuenca Grau et al. Acyclicity Conditions and their Application to Query Answering in Description Logics. In Proc. of KR 2012.


```
\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} & \leftarrow \mathsf{Now} \text{ an equivalence!} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.
```

```
\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
```


 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

$$\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$$

 $\mathsf{DB'} \left\{ \begin{array}{l} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \\ \mathsf{Doctor}(d_1) \\ \mathsf{Doctor}(c_1) \\ \mathsf{treats}(d_2, f(d_2)) \\ \mathsf{Patient}(f(d_2)) \\ \mathsf{treats}(c_1, f(c_1)) \\ \mathsf{Patient}(f(c_1)) \end{array} \right\} \mathsf{Skolems}$

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

$$\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$$

 $\mathsf{DB'} \left\{ \begin{array}{l} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \\ \mathsf{Doctor}(d_1) \\ \mathsf{Doctor}(c_1) \\ \mathsf{treats}(d_2, f(d_2)) \\ \mathsf{Patient}(f(d_2)) \\ \mathsf{treats}(c_1, f(c_1)) \\ \mathsf{Patient}(f(c_1)) \end{array} \right\} \mathsf{Skolems}$

$Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

$$\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$$

 $\mathsf{DB'} \begin{cases} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \\ \mathsf{Doctor}(d_1) \\ \mathsf{Doctor}(c_1) \\ \mathsf{treats}(d_2, f(d_2)) \\ \mathsf{Patient}(f(d_2)) \\ \mathsf{treats}(c_1, f(c_1)) \\ \mathsf{Patient}(f(c_1)) \end{cases} \\ \mathsf{Skolems} \\ \mathsf{Skolems} \\ \mathsf{Ad}_2, \mathsf{Ad}_2 \\ \mathsf{$

$Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

$$\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$$

 $\mathsf{Treats}(d_1, p_1)$ $\mathsf{Patient}(p_1)$ $\mathsf{Doctor}(d_2)$ $\mathsf{DB'} \left\{ \begin{array}{c} \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \\ \mathsf{Doctor}(d_1) \\ \mathsf{Doctor}(c_1) \\ \mathsf{treats}(d_2, f(d_2)) \\ \mathsf{Patient}(f(d_2)) \\ \mathsf{treats}(c_1, f(c_1)) \end{array} \right\} \mathsf{Skolems}$

 $\rightsquigarrow \qquad \{d_2, d_1, c_1\}$

 $Q(x) \leftarrow \mathsf{Doctor}(y)$ \mathcal{Q}_1

$$Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$$

 \mathcal{Q}_2

 $\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.$

 $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$

$$\left\{ \begin{array}{l} {{\operatorname{\mathsf{treats}}}(d_1,p_1) \\ {\operatorname{\mathsf{Patient}}}(p_1) \\ {\operatorname{\mathsf{Doctor}}(d_2) \\ {\operatorname{\mathsf{Consultant}}}(c_1) \\ {\operatorname{\mathsf{Doctor}}(d_1) \\ {\operatorname{\mathsf{Doctor}}}(d_1) \\ {\operatorname{\mathsf{Doctor}}(c_1) \\ {\operatorname{\mathsf{treats}}}(d_2,f(d_2)) \\ {\operatorname{\mathsf{Patient}}}(f(d_2)) \\ {\operatorname{\mathsf{Patient}}}(f(d_2)) \\ {\operatorname{\mathsf{treats}}}(c_1,f(c_1)) \end{array} \right\} \\ {\operatorname{\mathsf{Skolems}}} \\ {\operatorname{\mathsf{Skolems}}} \\ {\operatorname{\mathsf{skolems}}} \\ {\operatorname{\mathsf{reats}}}(c_1,f(c_1)) \\ {\operatorname{\mathsf{Patient}}}(f(c_1)) \\ \end{array} \right\} \\$$

 $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$ $\{d_2, d_1, c_1\}$ $\{d_1, d_2, c_1\}$ $Q_2 \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

- RL reasoning w.r.t. OWL ontology ${\cal O}$ gives lower bound answer ${\it L}$

- RL reasoning w.r.t. OWL ontology ${\cal O}$ gives lower bound answer L
- Transform \mathcal{O} into strictly stronger OWL RL ontology
 - Transform ontology into $Datalog^{\pm,v}$ rules
 - Eliminate V by transforming to Λ
 - Eliminate existentials by replacing with Skolem constants
 - Discard rules with empty heads
 - Transform rules into OWL 2 RL ontology O'

 RL reasonting w.r.t. O' gives (complete but unsound) upper bound answer U

Computing Upper Bound — Example

```
\mathcal{O} \left\{ \begin{array}{c} \mathsf{Doctor} \equiv \exists \mathsf{treats}.\mathsf{Patient} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{array} \right.
```

```
\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}
```


Computing Upper Bound — Example

```
\mathcal{O}' \begin{cases} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats.} \{P\} \\ \{P\} \sqsubseteq \mathsf{Patient} \\ \exists \mathsf{treats.Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \\ \mathsf{DB} \begin{cases} \mathsf{treats}(d_1, p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \end{cases}
```


 $S' \begin{cases} Doctor \subseteq \exists treats. \{P\} \\ \{P\} \subseteq Patient \\ \exists treats.Patient \subseteq Doctor \\ Consulatant \subseteq Doctor \\ d_1, p_1 \end{pmatrix} \\ \mathsf{DB'} \begin{cases} \mathsf{treat}_{Patient(p_1) \\ Doctor(d_2) \\ Consultant(c_1) \\ Patient(P) \\ Doctor(d_1) \\ Doctor(d_1) \\ Doctor(c_1) \\ treats(d_1, P) \\ treats(d_2, P) \\ treats(d_2, P) \\ treats(c_1, P) \end{cases}$

 $S' \begin{cases} Doctor \subseteq \exists treats. \{P\} \\ \{P\} \subseteq Patient \\ \exists treats.Patient \subseteq Doctor \\ Consulatant \subseteq Doctor \\ d_1, p_1 \end{pmatrix} \\ \mathsf{DB'} \begin{cases} \mathsf{treat}_{Patient(p_1) \\ Doctor(d_2) \\ Consultant(c_1) \\ Patient(P) \\ Doctor(d_1) \\ Doctor(d_1) \\ Doctor(c_1) \\ treats(d_1, P) \\ treats(d_2, P) \\ treats(d_2, P) \\ treats(c_1, P) \end{cases}$

 $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $S' \begin{cases} Doctor \subseteq \exists treats. \{P\} \\ \{P\} \subseteq Patient \\ \exists treats. Patient \subseteq Doctor \\ Consulatant \subseteq Doctor \\ d_1, p_1 \end{pmatrix} \\ \mathsf{DB'} \begin{cases} \mathsf{treat}_{P_1} \\ \mathsf{Patient}_{P_2} \\ \mathsf{Patient}_{P_2} \\ \mathsf{Consultant}_{P_2} \\ \mathsf{DB'} \\ \mathsf{DB'} \\ \mathsf{DB'} \\ \mathsf{Patient}_{P_2} \\ \mathsf{Dcotor}_{P_2} \\ \mathsf{Dcotor}_{P_2} \\ \mathsf{Consultant}_{P_2} \\ \mathsf{Dcotor}_{P_2} \\ \mathsf{Dcotor}_{P_2} \\ \mathsf{Consultant}_{P_2} \\ \mathsf{Dcotor}_{P_2} \\ \mathsf{Dcotor}_{$

 $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $\rightsquigarrow \qquad \{d_2, d_1, c_1\}$

Computing Upper Bound — Example

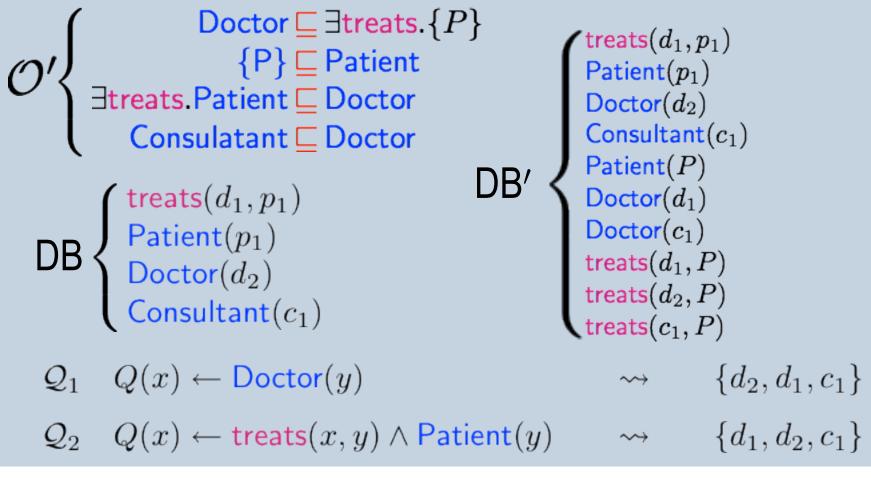
 $\mathcal{O}' \begin{cases} \mathsf{Doctor} \sqsubseteq \exists \mathsf{treats}. \{P\} \\ \{P\} \sqsubseteq \mathsf{Patient} \\ \exists \mathsf{treats}. \mathsf{Patient} \sqsubseteq \mathsf{Doctor} \\ \mathsf{Consulatant} \sqsubseteq \mathsf{Doctor} \end{cases}$ $\begin{array}{c} \mathsf{treats}(d_1,p_1) \\ \mathsf{Patient}(p_1) \\ \mathsf{Doctor}(d_2) \end{array}$ $\mathsf{DB'} \left\{ \begin{array}{l} \mathsf{Doctor}(d_2) \\ \mathsf{Consultant}(c_1) \\ \mathsf{Patient}(P) \\ \mathsf{Doctor}(d_1) \\ \mathsf{Doctor}(c_1) \\ \mathsf{treats}(d_1, P) \\ \mathsf{treats}(d_2, P) \\ \mathsf{treats}(c_1, P) \\ \mathsf{treats}(c_1, P) \end{array} \right.$ $\mathsf{DB} \begin{cases} \frac{\mathsf{treats}(d_1, p_1)}{\mathsf{Patient}(p_1)} \\ \frac{\mathsf{Doctor}(d_2)}{\mathsf{Consultant}(c_1)} \end{cases}$

 $Q_1 \quad Q(x) \leftarrow \mathsf{Doctor}(y)$

 $\rightsquigarrow \{d_2, d_1, c_1\}$

 $Q_2 \quad Q(x) \leftarrow \mathsf{treats}(x, y) \land \mathsf{Patient}(y)$

Computing Upper Bound — Example



- RL reasonting w.r.t. O' gives (complete but unsound) upper bound answer U
- If *L* = *U*, then both answers are sound and complete
- If $L \neq U$, then $U \setminus L$ identifies a (small) set of "possible" answers
 - Indicates range of uncertainty
 - Can (more efficiently) check possible answers using, e.g., HermiT
 - Can use U \ L to identify (small) "relevant" subset of data needed to efficiently compute exact answer

 [1] Zhou et al. PAGOdA: Pay-as-you-go Ontology Query Answering Using a Datalog Reasoner. J. of Artificial Intelligence Research, 54:309-367, 2015.

