Randomized Algorithms in Databases

Graham Cormode
University of Warwick
G.Cormode@Warwick.ac.uk
Why Randomize?

- Thanks to cluster computing, we can scale up more computations
 - Process all the transactions!
 - Count all the clicks!
 - Analyze all the analytics!

- But this is not always necessary or desirable - sometimes, just need a quick estimate
 - Faster, less energy than doing the exact computation
 - Use the estimate to decide whether/how to do the exact thing
 - Allow real-time response on commodity PC (versus batch on cluster)

- Often achievable via algorithms that are randomized
Caveats and Cautions

- Randomized algorithms are powerful and effective, but:
 - Don’t give the exact answer
 (so often not accessed via query languages)
 - Tend to be special purpose
 (so used for specific important problems)
 - Require some new terminology
 (so take some getting used to)

- Some resistance to randomization – can be argued against:
 - Want the exact answer? Most large data is highly noisy
 - Hard to debug? Randomized algorithms are simpler, repeatable
 - Want determinism? Hash tables are everywhere, caching, solar rays
Outline for the talk

- Some examples of ideas and terminology (high level, no proofs)
 - Sampling based: simple samples, count distinct
 - Sketch based: Bloom filter, Count-Min, AMS
 - (Summaries for more complex objects): graphs and matrices
- There are also **lower bounds**: limitations of what we can do
 - No free lunch
- Current trends and future challenges for compact summaries
- Many abbreviations and omissions (histograms, wavelets, ...)

Randomized Algorithms for Databases
Different randomized techniques are task-specific

- **Random samples**: a small representative subset of the data
 - Many uses in current and emerging databases

- **Bloom filter**: summarize a set in a bit-efficient manner
 - Used for browser databases of malware-hosting sites

- **Count-Min/Count sketch**: summarize a set of frequencies
 - Used in stream DBs to identify heavy source/destination combos

- **Hyperloglog**: estimate cardinality of sets
 - Used by ad networks to track user demographics in logs
1. Min-wise Sampling

- **Fundamental problem**: sample m items uniformly from data
 - Allows evaluation of query on sample for approximate answer
 - **Challenge**: don’t know how large total input is, so how to set rate?

- For each item, pick a random fraction between 0 and 1

- **Update**: store item(s) with the smallest random tag [Nath et al.’04]

 - Each item has same chance of least tag, so it is uniform
 - Can run on multiple inputs separately, then merge

| 0.391 | 0.908 | 0.291 | 0.555 | 0.619 | 0.273 |
Uses of Samples in DB

■ Random samples are used ubiquitously (50+ years of CS history)
 – Every opinion poll is a random sample (with confidence bounds)

■ Query Planning:
 – Use samples to estimate the cost of a particular query plan
 ■ E.g. estimate selectivity of a predicate, estimate join size
 – Some parts need different estimation approach (e.g. cardinality)

■ Data Integration:
 – Use samples to compare attributes: are they similar in nature?

■ Data Reduction:
 – Code/debug/test query/analytics on a small sample

■ Current status: In databases (behind the scenes) for decades
2. Bloom Filters

- **Bloom filters** [Bloom 1970] compactly encode set membership
 - E.g. store a list of many long URLs compactly
 - Update: Set all k entries to 1 to indicate item is present
 - Query: Can lookup items, store set of size n in $O(n)$ bits
 - **Analysis**: choose k and size m to obtain small false positive prob

- Duplicate insertions do not change Bloom filters

- Can be **merge** by OR-ing vectors (of same size)
Bloom Filters Applications

- Bloom Filters widely used in “big data” applications
 - Many problems require storing a large set of items

- Can generalize to allow deletions
 - Swap bits for counters: increment on insert, decrement on delete
 - If representing sets, small counters suffice: 4 bits per counter
 - If representing multisets, obtain (counting) sketches

- Bloom Filters are an active research area
 - Several papers on topic in every networking conference...
Bloom Filters in the wild

- **Google**: URL blacklisting in Chrome
 - Google compiles list of malicious URLs centrally
 - Exact storage of this list is high overhead for local storage:
 - ~1M URLs * ~100 bytes = 100MB
 - **Bloom maths**: use ~25 bits per item for 10^{-5} false positive rate
 - 3MB to store Bloom filter
 - Consequence of (false) positive: API call to Google to check URL
 - Effect of Bloom filter is to reduce costly API calls

- **Current status**: use of a variant encoding of hash values
 - A variant (randomized) algorithm
3. Count-Min Sketch

- Count Min sketch \([C, Muthukrishnan 04]\) encodes item counts
 - Allows estimation of frequencies (e.g. for selectivity estimation)
 - Some similarities in appearance to Bloom filters

- Model input data as a vector \(x\) of dimension \(U\)
 - Create a small summary as an array of \(w \times d\) in size
 - Use \(d\) hash function to map vector entries to \([1..w]\)
Count-Min Sketch Structure

- **Update**: each entry in vector x is mapped to one bucket per row.
- **Merge** two sketches by entry-wise summation
- **Query**: estimate $x[j]$ by taking $\min_k CM[k,h_k(j)]$
 - Guarantees error less than $\varepsilon \cdot ||x||_1$ in size $O(1/\varepsilon)$
 - Probability of more error reduced by adding more rows

d rows

$w = 2/\varepsilon$
Application: Packet stream analysis

- **AT&T Gigascope / GS tool**: stream data analysis
 - Developed since early 2000s
 - Based on commodity hardware + Endace packet capture cards

- **High-level (SQL like) language to express continuous queries**
 - Allows “User Defined Aggregate Functions” (UDAFs) plugins
 - Sketches in gigascope since 2003 at network line speeds (Gbps)
 - Flexible use of sketches to summarize behaviour in groups
 - Rolled into standard query set for network monitoring
 - Software-based approach to attack, anomaly detection

- **Current status**: latest generation of GS in production use at AT&T
 Also in Twitter analytics, other query log analysis tools
Generalization: Sketch Structures

- **Sketch** is a class of summary that is a **linear transform** of input
 - \(\text{Sketch}(x) = Sx \) for some matrix \(S \)
 - Hence, \(\text{Sketch}(\alpha x + \beta y) = \alpha \text{Sketch}(x) + \beta \text{Sketch}(y) \)
 - Trivial to update and merge

- Often describe \(S \) in terms of hash functions
 - \(S \) must have compact description to be worthwhile
 - If hash functions are simple, sketch is fast

- Analysis relies on properties of the hash functions
 - Seek “limited independence” to limit space usage
 - Proofs usually study the expectation and variance of the estimates
Sketching for Euclidean norm

- AMS sketch presented in [Alon Matias Szegedy 96]
 - Allows estimation of F_2 (second frequency moment)
 - Leads to estimation of (self) join sizes, inner products
 - Used at the heart of many streaming and non-streaming applications: achieves dimensionality reduction (‘Johnson-Lindenstrauss lemma’)

- Here, describe (fast) AMS sketch by generalizing CM sketch
 - Use extra hash functions $g_1...g_d \{1...U\} \rightarrow \{+1,-1\}$
 - Now, given update $(j,+c)$, set $CM[k,h_k(j)] += c^*g_k(j)$

- Estimate squared Euclidean norm (F_2) = $\text{median}_k \sum_i CM[k,i]^2$
 - Intuition: g_k hash values cause ‘cross-terms’ to cancel out, on average
 - The analysis formalizes this intuition
 - median reduces chance of large error
Application to Large Scale Machine Learning

- In machine learning, often have very large feature space
 - Many objects, each with huge, sparse feature vectors
 - Slow and costly to work in the full feature space
- “Hash kernels”: work with a sketch of the features
 - Effective in practice! [Weinberger, Dasgupta, Langford, Smola, Attenberg `09]
- Similar analysis explains why:
 - Essentially, not too much noise on the important features
4. Cardinality Estimation / Count Distinct

- The cardinality of a set is the number of distinct items in the data
 - A fundamental quantity with many applications
 - COUNT DISTINCT estimation in DBMS

- Application: track online advertising views
 - Want to know how many distinct viewers have been reached

- Early approximate summary due to Flajolet and Martin [1983]
- Will describe a generalized version of the FM summary due to Bar-Yossef et. al
 - Known as the “k-Minimum values (KMV)” algorithm
KMV estimation algorithm

- Let \(m \) be the domain of the \(n \) distinct data elements
 - Each item in data is from \([1...m]\)
- Pick a random (pairwise) hash function \(h: [m] \rightarrow [R] \)
 - For \(R \) “large enough” (polynomial), assume no collisions under \(h \)
- Keep the \(t \) distinct items achieving the smallest values of \(h(i) \)
 - Note: if same \(i \) is seen many times, \(h(i) \) is same
 - Let \(v_t = t^{th} \) smallest (distinct) value of \(h(i) \) seen
- If \(n < t \), give exact answer, else estimate \(n' = tR / v_t \)
 - \(v_t / R \approx \) fraction of hash domain occupied by \(t \) smallest
 - Analysis sets \(t = 1/ \varepsilon^2 \) to give \(\varepsilon \) relative error
Engineering Count Distinct

- **Hyperloglog algorithm** [Flajolet Fusy Gandouet Meunier 07]
 - Hash each item to one of $1/e^2$ buckets (like Count-Min)
 - In each bucket, track the function $\max \left\lfloor \log(h(x)) \right\rfloor$
 - Can view as a coarsened version of KMV
 - Space efficient: need $\log \log m \approx 6$ bits per bucket
 - Take harmonic mean of estimates from each bucket
 - Analysis much more involved

- Can estimate intersections between instances
 - Make use of identity $|A \cap B| = |A| + |B| - |A \cup B|$
 - Error scales with $\varepsilon \sqrt{|A||B|}$, so poor for small intersections
 - Lower bound implies should **not** estimate intersections well!
 - Higher order intersections via inclusion-exclusion principle
Application: User tracking and profiling

- **Domain:** advertising on the web
 - Each user sees many ads
 - Each user has some set of attributes (possibly imputed):
 - Geolocation, age, sex, income, interests, education level
 -Advertisers want fast answers to slice-and-dice queries
 - How many 18-35 yo males with university education saw ad?
- Some companies (*Aggregate Knowledge*) used HLL for this
 - Faster and more compact than sifting through data on Hadoop
- **Current status:** AK using Amazon Redshift solution
 - This amount of data is now stored exactly and interrogated fast
 - HLL used with Google log analysis platform (and others)
What randomization can’t do

- Some basic problems require storing the full input data
 - Determining whether or not a certain item was seen
 - Determining whether two large sets have any item in common

- So there can’t be sketches for some problems we’d like to solve
 - Can’t give accurate answer to cosine similarity of two vectors
 - Can’t good accuracy for matrix multiplication
 - Can’t tell whether the answer is zero, or close to zero

- Can make progress on these problems with weaker guarantees
 - But needs more care: will this work for the desired application?
Current Directions in DB Randomized algorithms

- Sparse representations of high dimensional objects
 - Compressed sensing, sparse fast fourier transform
- General purpose **numerical linear algebra** for (large) matrices
 - k-rank approximation, linear regression, PCA, SVD, eigenvalues
- Summaries to **verify** full calculation: a ‘checksum for computation’
- **Geometric** (big) data: coresets, clustering, machine learning
- **Graph/social net** data: algorithms for matching, connectivity
- Use of summaries in large-scale, **distributed computation**
 - Build them in MapReduce, Continuous Distributed models
- Communication-efficient **maintenance of summaries**
 - As the (distributed) input is modified
Summary

- There are two approaches in response to growing data sizes:
 - Scale the computation up; scale the data down
- The theory and practice of randomized algorithms has many guises:
 - Sampling theory (since the start of statistics)
 - Streaming algorithms in computer science
 - Compressive sampling, dimensionality reduction… (maths, stats, CS)
- Continuing interest in applying and developing new theory
 - Ad: Postdoc & PhD studentships available at U of Warwick/ATI