
Ontology Based Data Access (OBDA)

Ian Horrocks
Information Systems Group
Department of Computer Science
University of Oxford

Motivation

§ Huge quantity of data increasing
at an exponential rate

§ Identifying & accessing relevant data
is of critical importance

§ Handling data variety & complexity
often turns out to be main challenge

§ Semantic Technology can seamlessly
integrate heterogeneous data sources

Semantic Technology

Rich conceptual schemas used to integrate heterogeneous sources
§ User Centric

§ Schema modelled according to user intuitions
§ Independent of physical structure/storage of data

§ Declarative
§ Improved understandability
§ Easier design, maintenance and evolution

§ Logic-based semantics
§ Precise and formally specified meaning
§ Machine processable

§ Used at both design and query time
§ Check validity and consequences of design
§ Easier query formulation and enriched query answers

§ Conceptual schemas use OWL ontology language
§ OWL based on description logic SROIQ

✔Declarative

✔Clear semantics

✔Well understood computational properties
(e.g., algorithms, decidability, complexity)

✘ N2ExpTime-comlete combined complexity

✘ NP-hard data complexity (-v- AC0 for databases)

How can we provide (empirically) scalable query answering?

Semantic Technology: Scalability Challenge

OWL Profiles

OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”
§ OWL 2 QL

§ Based on DL-Lite
§ Efficiently implementable via rewriting into relational queries (OBDA)

Pipelines from
oil facilities?

Pipelines from
oil facilities?

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1, :p2, :p3

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

map

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

map

select Pipeline.ID from Pipeline, . . .
where Pipeline.From = Facility.ID and . . .
UNION
select ID from Pipeline
where Oil = ”Y”

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

Pipelines from
oil facilities?

rewrite

map

select Pipeline.ID from Pipeline, . . .
where Pipeline.From = Facility.ID and . . .
UNION
select ID from Pipeline
where Oil = ”Y”

(R2RML) mappings

Pipeline
ID Oil From
p1 N f1
p2 Y f2
p3 Y Null

(:p1, rdf:type, :Pipeline)
(:p1, :fromFacility, :f1)

(:f1, rdf:type, :OilFacility)
(:p2, rdf:type, :OilPipeline)
(:p2, :fromFacility, :f2)

(:f2, rdf:type, :OilFacility)
(:p3, rdf:type, :OilPipeline)

Q(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)

Q

0(?x) (?x, rdf:type, :Pipeline) ^
(?x, :fromFacility, ?y) ^
(?y, rdf:type, :OilFacility)
_ (?x, rdf:type, :OilPipeline)

:OilPipeline= select ID from Pipeline
where Oil = ”Y”

...

:p1, :p2, :p3

OWL 2 QL ontology

SubClassOf(:OilPipeline
ObjectIntersectionOf(:Pipeline
ObjectSomeValuesFrom(:fromFacility :OilFacility)))

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset
§ Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q0 into a DB query

OWL 2 QL and Query Rewriting

Given QL ontology O query Q and mappings M:
§ Use O to rewrite Q → Q0 s.t. answering Q0 without O

is equivalent to answering Q w.r.t. O for any dataset
§ Map ontology queries → DB queries (typically SQL) using

mappings M to rewrite Q0 into a DB query
§ Evaluate (SQL) query against DB

Architecture

Query rewriting:
• uses ontology & mappings
• computationally hard
• ontology & mappings small

Query evaluation:
• ind. of ontology & mappings
• computationally tractable
• data sets very large

Architecture

Query rewriting:
• uses ontology & mappings
• computationally hard
• ontology & mappings small

Query evaluation:
• ind. of ontology & mappings
• computationally tractable
• data sets very large

Other features:
support for query
formulation

Architecture

Query rewriting:
• uses ontology & mappings
• computationally hard
• ontology & mappings small

Query evaluation:
• ind. of ontology & mappings
• computationally tractable
• data sets very large

Other features:
support for query
formulation
“Bootstrapping”
Ontology & mappings

Architecture

Query Rewriting — Issues

1 Rewriting
§ May be large (worst case exponential in size of ontology)
§ Queries may be hard for existing DBMSs

2 Mappings
§ May be difficult to develop and maintain

3 Expressivity
§ OWL 2 QL (necessarily) has (very) restricted expressive power, e.g.:

§ No functional or transitive properties
§ No universal (for-all) restrictions
§ …

OWL Profiles – Beyond QL?

OWL 2 defines language subsets, aka profiles that can be
“more simply and/or efficiently implemented”
§ OWL 2 QL

§ Based on DL-Lite
§ Efficiently implementable via rewriting into relational queries (OBDA)

§ OWL 2 RL
§ Based on “Description Logic Programs” ()
§ Implementable via Datalog query answering

§ OWL 2 EL
§ Based on EL++

§ Implementable via Datalog query answering plus “filtration”

RL/Datalog Query Ans. via Materialisation

Given (RDF) data DB, RL/Datalog ontology O and query Q:

RL/Datalog Query Ans. via Materialisation

Given (RDF) data DB, RL/Datalog ontology O and query Q:
§ Materialise (RDF) data DB → DB0 s.t. evaluating Qw.r.t. DB0

equivalent to answering Qw.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

RL/Datalog Query Ans. via Materialisation

Given (RDF) data DB, RL/Datalog ontology O and query Q:
§ Materialise (RDF) data DB → DB0 s.t. evaluating Qw.r.t. DB0

equivalent to answering Qw.r.t. DB and O
nb: Closely related to chase procedure used with DB dependencies

§ EvaluateQ against DB0

Materialisation — Example

Materialisation — Example

DB

Materialisation — Example

DB

Materialisation — Example

DB

Materialisation — Example

DB

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Example

DB DB0

Materialisation — Issues

1 Scalability
§ Ptime complete
§ Efficiently implementable in practice?

2 Updates
§ Additions relatively easy (continue materialisation)
§ But what about retraction?

3 Migrating data to RDF
§ Materialisation assumes data in “special” (RDF triple) store
§ How can legacy data be migrated?

4 Expressivity
§ ; in particular, no invention of new individuals

Materialisation: Scalability

§ Efficient Datalog/RL engine is critical

§ Existing approaches mainly target distributed “shared-nothing”
architectures, often via map reduce

§ High communication overhead

§ Typically focus on small fragments (e.g., RDFS), so don’t really address
expressivity issue

§ Even then, query answering over (distributed) materialized data is non-
trivial and may require considerable communication

RDFox Datalog Engine

§ Targets SOTA main-memory, mulit-core architecture
§ Optimized in-memory storage with ‘mostly’ lock-free parallel inserts

§ Memory efficient: commodity server with 128 GB can store >109 triples

§ Exploits multi-core architecture: 10-20 x speedup with 32/16 threads/cores

§ LUBM 120K (>1010 triples) in 251s (20M t/s) on T5-8 (4TB/1024 threads)

RDFox Datalog Engine

§ Incremental addition and retraction of triples
§ Retraction via novel FBF “view maintenance” algorithm

§ Retraction of 5,000 triples from materialised LUBM 50k in less than 1s

§ Many other novel features
§ Handles more general (than RL) Dalalog and SWRL rules

§ SPARQL features such as BIND and FILTER in rule bodies

§ Native equality handling (owl:sameAs) via rewriting

§ Stratified negation as failure (NAF)

Materialisation: Data Migration

§ Need to specify a suitable migration process
§ Use R2RML mappings to extract data and transform into RDF
§ But where do these mappings come from?

§ Recall query rewriting:
§ Mappings M are R2RML mappings
§ Run mappings in reverse to extract

and transform data

§ “Lazy ETL”
§ Deploy query rewriting (OBDA) system
§ Extend O and M as needed
§ Use M to ETL data into RDF store

Materialisation: Expressivity

§ RL is more powerful than QL, but
§ In particular, no “individual creation” (RHS existentials)
§ Can’t express, e.g.,

§ Recall OWL 2 EL
§ Based on EL++

§ Implementable via Datalog query answering plus “filtration”

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximateO into
Datalog program D

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximateO into
Datalog program D

§ EvaluateQ over D + Data Set
(via materialisation)

OWL 2 EL via Datalog + Filtration

Given (RDF) Data Set, EL ontology O and query Q:

§ Over-approximateO into
Datalog program D

§ EvaluateQ over D + Data Set
(via materialisation)

§ Use (polynomial) Filtering Procedure
to eliminate spurious answers

Discussion

§ QL-Rewriting has many advantages
§ Data can be left untouched and in legacy storage

§ Exploits existing DB infrastructure and scalability

§ …

§ But what if more expressiveness/flexibility is needed?
§ Query answering for EL and RL still tractable (polynomial)

§ Critically depend on Datalog scalability – RDFox to the rescue!

§ Easy migration path from QL-rewriting via “lazy ETL”

Future Work

§ Piloting, evaluation and tuning

§ Porting to other large-scale architectures

§ Semantic (data) partitioning for distributed architectures

§ (Incremental maintenance of) aggregations

§ Improved query planning

§ Stream reasoning

§ Hybrid rewriting/materialisation (on demand) approach

§ Expressiveness beyond RL/EL via PAGOdA techniques

§ …

Acknowledgements

Thank you for listening

Thank you for listening

Any questions?

