
Graph Database Applications
Mastering the Heterogeneity Challenges

Michael Schmidt

DBOnto Workshop, May 27, 2016 (London)

2

Company Facts

•  Founded in 2014

•  Headquarterted in Walldorf, Germany

•  Software & projects around

 knowledge graph applications

•  Solutions for industry, life sciences,

 cultural heritage, and other domains

metaphacts at a Glance

3

Challenges in Knowledge Graph
Application Building

Schema heterogeneity
& alignment problems

Structured Queries vs.
(Graph) Analytics

Data residing in specialized
& legacy systems

Different data modalities
(geospatial, temporal, …)

Raw data

Knowledge
Graph

Application

4

Platform for Knowledge Graph
Application Development

•  RDF, RDFS & OWL for knowledge
representation

•  Graph-based -> easing integration

•  Built-in semantics

•  Low-level and higher-level APIs: SPARQL,
LDP, REST, ...

•  Choice depends on use case and
requirements

•  Declarative application development
approach

•  HTML5 based, reusable (and mostly
domain independent) semantic Web
components

•  Generic, composable & standards-based

The metaphacts Approach

<semantic-simple-search data-config='{
 "query":"
 SELECT ?result ?label ?desc ?img WHERE {
 ?result rdfs:label ?label .
 ?result rdfs:comment ?desc .
 ?result foaf:thumbnail ?img .
 FILTER(CONTAINS(?label, ?token))
 }",
 "searchTermVariable":"token", // user input
 "template":“

 {{label.value}} ({{desc.value}})"
}'/>

Rendered
component

Ex.: declarative spec. of keyword
search field driven by SPARQL

Results computed based on SPARQL
query instantiation with user input

5

•  Challenge: supporting hybrid search

•  Combine free-text search with structured
data extraction in SPARQL endpoint

•  Reuse existing systems

•  Non-invasive approach

•  Specialized tools (e.g. for text search)
often benefit from years of development &
experience

•  Goal

•  No proprietary, coded solution

•  Still have it declarative

Hybrid Query Scenario Challenge

Triple Store Text Index

Structured
(meta)data

Unstructured
data

Application

6

•  Key idea: custom SPARQL SERVICE extensions

•  Standards-compliant syntax & clear semantics

•  Elegant & easy to understand

•  Extensible

Custom SPARQL SERVICE Extensions

Example: returned entities including author & type containing
the search terms “London” or “Queen”, ordered by Solr score

SELECT ?res ?type ?author WHERE {
 SERVICE fts:search
 {
 ?res fts:search "London | Queen" .
 ?res fts:endpoint "http://my.solr/select" .
 ?res fts:params "fl=uri,score" .
 ?res fts:scoreField "score" .
 ?res fts:score ?score .
 }
 ?res rdf:type ?type .
 ?res :hasAuthor ?author .
} ORDER BY DESC(?score)

Triple Store

SPARQL
Endpoint

Text Index

Structured
(meta)data

Unstructured
data

Application

7

Graph Analytics vs. Querying

•  Approach: unified, GPU based runtime

•  Data graph loaded into the GPU at startup

•  Runtime provides highly efficient algebraic core operators
1.  Used to accelerate SPARQL query evaluation
2.  Used to execute graph algorithms (e.g. BFS, SSSP, PageRank, ...)

•  Own algorithms can be specified using a domain-specific functional language
•  Translated into programs over the GPU

•  Algorithms exposed as custom SPARQL SERVICE extensions

Blazegraph GPU bridges the gap between declarative
SPARQL queries and functional graph analytics programs.

Example: invoking breadth-first search via custom SPARQL SERVICE extension

8

metaphacts Reference Architecture

Graph Database

•  RDF triple store
•  Unified management of schema and

instance-level data
•  GPU-based, unified runtime for querying

and graph analytics
•  Extensions for geospatial & temporal data
•  Open Source & extensible

Knowledge graph
applications (for end users)

 Base API: SPARQL Endpoint (implicitly incl. SERVICE extensions)

 Generic higher-level APIs (e.g. LDP)

 REST APIs (domain specific)

OBDA Endpoint

Relational Data

…

Access via custom SPARQL
SERVICE extensions

JDBC

Graph Data Processing (Querying & Analytics)

Access via SPARQL SERVICE
(federation) or one-time import

Data-driven services
Semantic data connectors

for external tools
Knowledge Graph management

UIs (for experts)

Text Index

Specialized &
legacy systems

Unified API Stack

9

metaphacts Reference Architecture

Key Characteristics

ü  Non-invasive
 -> no need for large-scale data migration upfront

ü  Unified API stack
 -> data access is data type & data source independent

ü  Flexible & extensible
 -> incrementally bring semantics into the enterprise

ü  Standards compliant
 -> no vendor lock-in (for core architecture)

10

Research @ metaphacts

What:

Design a scalable, federated
semantic enterprise search
system over distributed,
heterogeneous data sources.

Key challenges:

•  Integration of specialized
and legacy systems

•  Efficient federated query
evaluation

•  Design & implement
generic APIs for search

What:

Build an open, service-based
platform for management and
efficient processing of sensor
based geo data.

Key challenges:

•  Scalable backend services
for the storage, retrieval,
and processing of
semantic geo data

•  Flexible, micro-service
based architecture

Data level

•  Efficiency and query
optimization

•  GPU acceleration & analytics

Architectural level

•  Integration with Big Data
frameworks (SPARK, …)

Application level

•  Supporting management of
semantic assets (queries,
ontologies, mappings, …)

•  Abstraction layers & APIs

Looking for partners to
address the challenges ahead!

