

Semantics-related Challenges in Data Analytics Applications @ Siemens

Stephan Grimm

Unrestricted @ Siemens AG 2016

Siemens Corporate Technology

Digitalization changes everything

Unrestricted © Siemens AG 2016

Page 2

SINALYTICS Platform powers Siemens Digital Services

Sinalytics creates business proximity and benefits of scale

We build on common technology platforms ...

- Latest technology for all Siemens businesses
- Reduction of technical complexity in the company
- Leveraging synergies through scaling
- Faster development

- ...and use the customer proximity of our operating units to develop applications
- Know-how regarding large installed bases of products and systems
- Deep know-how of customer processes and challenges
- Many existing applications that already generate value for our customers

Siemens Mobility Services – Predictive Maintenance requires analysis of massive amounts of data

- Trains are fitted with
 hundreds of sensors to
 monitor critical parameters
- Each sensor can produce massive amounts of data
- Predictive patterns must be discovered for individual parts
- Finding clusters of signals which are jointly predictive for failures requires interactive analysis of all data

Page 6

Siemens Wind Power Service – Business Understanding

- Replacing main components is extremely costly, especially offshore
- Unknown failure modes, e.g., infant mortality, constant failure rate, wear out
- Objectives:
 - Predict risks of parts to fail
 - Identify root causes of failures

Siemens Digital Services powered by Sinalytics – Example: Optimization of gas turbine operation

Energy System

- Market drivers
- Customer needs
- Product cycles

Gas Turbines

- Mechanical Engineering
- Thermodynamics
- Combustion chemistry
- Sensor properties

Autonomous Learning

- Neural Networks
- Smart Data Architecture processes data from 5,000 sensors per second

Results

Reduced NOx Emissions

Extension of service intervals

Semantic technologies driving development from description of past to decision support and autonomy

Expressivity of semantic models

Combine AI Techniques in Cognitive Systems to make machines intelligent

Automated planning of maintenance service and activities

C

Unrestricted © Siemens AG 2016

Page 10

Perception: Connecting Industrial Knowledge (Sources)

A

Relational Learning (e.g. via Tensor Factorization)

Tresp, Nickel. Tensor Factorization for Multi-Relational Learning, ECML, 2013

Information extraction (e.g. Natural Language Processing)

Industrial Knowledge Graph

Knowledge fusion into one coherent semantic model

Examples for automated graph construction

Unrestricted © Siemens AG 2016

В

Cognition: Enable Intuitive End User Access to Industrial Data

Industrial Knowledge Graph

Ontology-based Data Access

B

Semantic knowledge fusion and reasoning for integrated diagnostics Problem: high analysis effort due to lack of uniform data models

SIEMENS

Page 13

Β

Abstraction Enables Uniform Solutions (EU funded Project Optique*)

Unrestricted © Siemens AG 2016 Page 14

Corporate Technology

В

Abstraction Enables Uniform Solutions (EU funded Project Optique*)

Images + Text

Unrestricted © Siemens AG 2016

Page 15

Fault Diagnostics with OWL 2 EL Reasoning

Power Plant Use Case

- Causality between symptoms and faults
- Location of phenomena in system
- Taxonomies of faults

Diagnostic Knowledge in OWL 2 EL

- Easy maintenance of diagnostic knowledge
- OWL 2 Profiles with faster computation on embedded, ressource-constrained devices

Unrestricted © Siemens AG 2016 Page 16

[1] S. Grimm, M. Watzke, T. Hubauer, F. Cescolini, Embedded EL+ Reasoning on Programmable Logic Controllers, In Proceedings of the 11th International Semantic Web Conference, November 2012 Corporate Technology

Semantic Plant Model Repository Knowledge Graph Handling for Domain Experts

- Provide integrated access to plant models for user navigation and M2M communication
- Plant model repository based on Semantic Web technology

[1] L. Abele, S Grimm, A knowledge-based Integration of Industrial Plant Models,

In Proceedings of the 39th conference of the IEEE Industrial Electronics Society, 2013

Page 17

С

Decision: From Unified Insights to Actions

Key Challenges related to Semantics for Data Analytics

Capture internal domain knowhow

Build up Industrial Knowledge Graphs

- Build and maintain company-internal domain ontologies for vertical businesses
- Establish semantic technologies as the means for meta/master data management
- Extract information from established tool portfolio in an automated way

Make technology accessible

Make Semantics Usable for Non-experts

- Build on intuitive and problem-oriented representation formalisms
- Provide tooling for domain model authoring
- Establish abstraction layers between formalisms and tooling

Support data analytics semantically

Combine Data Analytics with Semantics

- Semantically represent domain data models that are input to analytics tasks for easier access by analysts and decision makers
- Semantically represent analytical findings for further automated processing
- Semantically annotate analytics workflows to support analytical model management

Unrestricted © Siemens AG 2016