
ArtForm
Dynamic analysis of JavaScript validation in web forms

Ben Spencer, supervised by Michael Benedikt and Franck van Breugel
In collaboration with Casper Svenning Jensen and Anders Møller

Form Understanding

When crawling the web, data is often hidden behind forms with validation constraints. We aim to
analyse JavaScript code attached to forms and infer their integrity constraints, retrieve or model
the hidden data, and improve the efficiency of searching or data-extraction tools.

 Dynamic features of JavaScript and real-world code make static analysis difficult.
 We use concolic analysis and perform a symbolic execution driven by concrete runs.
 ArtForm is built on Artemis1, a tool for automated testing of JavaScript applications.

Concolic Analysis Example

function validate() {
 x = document.getElementById("name").value;
 y = document.getElementById("age").value;
 if (x.length < 3) {
 alert("Error!"); return false;
 } else {
 if (parseInt(y, 10) >= 18) {
 return true;
 } else {
 alert("Error!"); return false;
 }
 }
}

y Conditions Valid Run Next Goal x

'' len(x) < 3 No 1 len(x) >= 3 ''

'Smith'
len(x) >= 3
int(y) < 18 No 2

len(x) >= 3
int(y) >= 18 'John'

3 '30'
len(x) >= 3
int(y) >= 18 Yes Finished 'John'

validate()

len(x)
< 3

int(y)
>= 18

TrueFalse

False True

x = John
y = 30

x = ''
y = ''

x = John
y = Smith

ArtForm Architecture

 Instrumented WebKit Browser
 Controls all code execution and events.
 Allows access to the DOM implementation

and page information.

Symbolic Interpreter
 Tracks both concrete and symbolic values.
 Form inputs are initially symbolic variables

and symbolic information is propagated as
they are used.

 Records the path taken and the symbolic
branches observed.

Trace Classifier
 Decides whether a trace was a

successful submission or not.
 Based on alerts, changes to the

DOM and page loads.

Path Tree
 Stores information about the

previous runs.

Search Procedure
 Chooses the next path to explore.
 We are Investigating good search strate-

gies to find interesting parts of the tree
more quickly.

Interface Analyser
 Chooses the entry-point.
 Could be buttons, links, images or inputs

and forms may cover the entire page.
 ArtForm uses DIADEM2 for page analysis.

Test Driver
 Loads the test page with no saved state.
 Injects the given inputs into the form.
 Simulates real click on submit button.

Constraint Solver
 Solves the path constraint to generate the

next input values to test.
 Translates our internal constraints to input

for a third-party solver.
 ArtForm uses CVC43.

Artemis
WebKit Browser

Concrete Interpreter

Symbolic Interpreter

Search Procedure

Test Driver

Constraint Solver Path Tree

Trace Classifier

Interface Analyser

Web Form Example

URL: www.underwoods.co.uk/search.cfm
Branches: 629 Success: 248 Failure: 164
Constraints: 692 Traces: 412 Unsatisfiable: 280

Issues

 Event handlers
 Each field has its own validation func-

tion and may depend on other fields.
 Triggering them in-order is a useful

guess, but may miss some information.
 Checking dependence between the

handlers is difficult.
 Testing all orderings is not feasible.

 Values may be tested before injection.
 Forms may be updated dynamically.
 Select boxes and radio buttons have

implied constraints found in the DOM.
 JavaScript’s coercion semantics and NaN

are difficult to model and solve.
 Some constraint types are not supported

by the solver or our translation.
 JavaScript minification and obfuscation.
 Long loops and repeated code.

Future Work

 Continue testing on real-world sites to
identify common patterns which we do
not handle well.

 Track event handler dependencies and
use partial order methods to choose
appropriate orderings to test.

 Use heuristics or static analysis to target
the search and speed up exploration of
the most interesting parts of the trees.

 Work on converting the trees to useful
descriptions of the constraints.

 Infer higher-level constraints such as set
containment which are not shown direct-
ly in our traces.

 New features for our translator and the
solver, for example more complex regular
expression tests or string inequalities.

ArtForm is available at github.com/cs-au-dk/Artemis

[1] brics.dk/artemis/
[2] diadem.cs.ox.ac.uk
[3] cvc4.cs.nyu.edu/web/

