

University of Oxford, Computer Science Department Ontology-mediated Analytic Query Answering Bernardo Cuenca Grau Ian Horrocks Mark Kaminski

Egor Kostylev Boris Motik Charalampos Nikolaou

Analytics-aware ontology-based data access

Limitations and challenges

- □ *Rewritability* of queries is not always possible
- Limited query language (e.g., no support for analytical operations like min, max, count, sum, avg)
- □ Semantic mismatch between data sources and ontological level

Data sources	Ontological level			
closed world (CWA)	open world (OWA)			

bag semantics	VS.	set semantics
null values		existential quantification

 \Rightarrow Problematic with respect to supporting analytical operations

Optimisation of ontological queries is hard

Approach

Motivating example

 $\mathcal{O}: \begin{array}{l} Sensor \sqsubseteq \exists hasMeasmnt \\ Sensor \sqsubseteq \exists hasMUnit \end{array}$

 $\begin{array}{l} \mathsf{SELECT} \ \mathsf{sid} \ \mathsf{FROM} \ \mathsf{Sensors} \rightsquigarrow Sensor(sid) \\ \mathcal{M}: \ \mathsf{SELECT} \ \mathsf{sid}, \ \mathsf{unit} \ \mathsf{FROM} \ \mathsf{Sensors} \rightsquigarrow hasMUnit(sid, unit) \\ \ \mathsf{SELECT} \ \mathsf{sid}, \ \mathsf{val} \ \mathsf{FROM} \ \mathsf{Measmnts} \rightsquigarrow hasMeasmnt(sid, val) \\ \end{array}$

	Sensors (sid,tid,unit)			Measmnts (sid,val,t)		
	sensor1	turbine1	celsius	sensor1	-50	t1
Data source:	sensor2	turbine1	psi	sensor2	5000	t1
	00000r	turbing		a a b a a r a	0500	∔ 4

What is the answer to the following questions?

- Q_1 : What is the number of measurements?
- Q_2 : What is the maximum measurement value for each sensor?

Query evaluation

- $\square \quad ACQ \text{ query language: } CQ + aggregate functions in head [1, 2]$ $<math>Q_1: q(\operatorname{count}(y)) \leftarrow \exists x \ hasMeasmnt(x, y)$ $Q_2: q(x, \max(y)) \leftarrow hasMeasmnt(x, y)$
- $\square \quad \textbf{Rewritability:} \quad \text{Are there } \mathcal{Q}'_1, \ \mathcal{Q}'_2 \text{ over the data sources to} \\ \text{answer } \mathcal{Q}_1 \text{ and } \mathcal{Q}_2 \text{ over } \mathcal{O}? \quad \$

Semantics

 $\square \quad \text{Extend DL-Lite}_{\mathcal{A}} \text{ with } multi-set \text{ (bag) semantics} \\ \Rightarrow \text{ conservative extension of set semantics} \\$

36113013	ipin	36113013	2000	LI
		sensor1	-50	t2

- \Rightarrow preserves cardinality from data sources
- □ count-ACQs: (a) minimal [2] and (b) skolem-based semantics ⇒ identify safe queries for which minimality is tractable
- non-count-ACQs: aggregate over known values [1]

Expressiveness: pushing the envelope further

Can we answer the following questions using ACQs?

- □ What is the lowest cost for flying from London to Rome?
- How many bolts does a car manufacturer need to order for a specific model?

Challenges

□ Apart from *aggregation* (e.g., sum, min, and count), we need

Previous work

- No semantics for the general case
- Proposals in the literature unsatisfactory:
 * High complexity, no value invention [3]
 - * Undecidability of fact entailment [4, 5, 6]
 - * Limited expressivity (e.g., functionality) [3, 6, 7]
 - * Unnatural syntactic restrictions (hard to write programs) [4]

Our goals

- Define intuitive semantics leading to a *unique model*
- Offer a natural and user-friendly syntax
- □ *Generalise* existing approaches
- □ *Low complexity* of query evaluation; *sufficient* expressive power

also *recursion* to formulate/answer the above questions

- □ Assume a *rule-based language* extended with *aggregates*
- Interaction between recursion and aggregation is very powerful and non-trivial to manage

Example program for cheapest flights

 $\texttt{flight}(X, Z, C) \leftarrow \texttt{flight}(X, Y, C1), \ \texttt{flight}(Y, Z, C2), \ C = C1 + C2$ $\texttt{cheapest_flight}(X, Y, C) \leftarrow C = \min(C, \ \texttt{flight}(X, Y, C))$

References		
 D. Calvanese et al. Aggregate queries over ontologies. In ONISW '08. E. V. Kostylev and J. L. Reutter. Complexity of answering counting aggregate queries over DL-Lite. JWS '15. W. Faber et al. Semantics and complexity of recursive aggregates in answer set programming. Al '11. 	 [4] K. A. Ross and Y. Sagiv. Monotonic aggregation in deductive database. <i>JCSS '97</i>. [5] A. Van Gelder. Foundations of aggregation in deductive databases. In <i>DOOD'93</i>. [6] S. Greco. Dynamic programming in datalog with aggregates. <i>TKDE '99</i>. [7] I. S. Mumick et al. The magic of duplicates and aggregates. In <i>VLDB '90</i>. 	

DBOnto workshop Semantic Web and Data Integration: new technologies and applications to industry

Alan Turing Institute, London, 2016