
Building up plans

PDQ: A PLATFORM FOR REFORMULATING QUERIES
Michael Benedikt, George Konstantinidis, Efthymia Tsamoura - Oxford University

Project homepage: http://www.cs.ox.ac.uk/projects/pdq/ Contact: firstname.lastname@cs.ox.ac.uk

0

Given a conjunctive query

Q :- ∃x1…xkΛi Ri

over a schema with access restrictions over the schema relations and integrity constraints

Σ and a cost function C find a plan that minimises the cost to answer Q under C.

Access restrictions over relations require values of certain attributes to be given as inputs to

access relations.

The integrity constraints Σ are given by tuple-generating dependencies (TGDs):

∀x1,…, xk ∧i Ai → ∃y1,…, yl ∧j Bj

Problem statement Example

Access plans

Pruning out sub-plans Speeding-up planning

Prototype with LogicBlox

Plan language

 Access operators

 Dependent join operators

 Joins, selections and projections

Each plan is associated with

 the inputs required to perform the

plan

 implicit information found through

reasoning

A plan can be

 Open (requires inputs to run) or

closed (can be run stand alone)

 Successful (equivalent to query) or

unsuccessful

Keep the best plan within some class

 group plans by input and by implicit

information

 discard plans with the same or less

implicit information and higher cost

Prune out unpromising sub-plans

 prune out plans with cost higher than

the best closed and successful plan

found

 Search the plan space in parallel

 Speeding up reasoning

 group plans based on their implicit

information

 when combining plans from two

groups reason only the first time a

composite plan is created from these

two groups

 Prune out plans with cost higher than

the best plan prior to reasoning

Customer∅: ∅ → cid

Product∅: ∅ → pid, pname, pprice

Boughtcid: cid → itemid

Itempid: itemid → pid

SELECT CustomerDetails.cid, Product.pprice

FROM CustomerDetails, Product, Item, Bought

WHERE CustomerDetails.cid = HasBought.cid

AND Item.itemid = HasBought.itemid

AND Product.pid = Item.pid

Customer(cid) → CustomerDetails(cid,cname,cphone)

CustomerDetails(cid,cname,cphone) → Customer(cid)

Customer(cid)

CustomerDetails(cid,cname,cphone)

Product(pid,pname,pprice)

Item(itemid,pid)

Bought(cid,itemid)

Deriving implicit information

Preprocessing step

 Create "hidden database" of facts by

forming canonical database of Q Q* and

taking consequences under Σ.

 Augment Σ with accessibility axioms and

inferred accessible copies of the

constraints in Σ.

Implicit information of accesses

 consequences of hidden facts exposed

by operators

Implicit information of

BinaryOperator(Plan1,Plan2)

 consequences of [implicit information of

Plan1 ∪ implicit information of Plan2]

under augmented Σ

Customer(cid) → InferredAccessibleCustomer(cid) Λ Accessible(cid)

Product(pid,pname,pprice) → InferredAccessibleProduct(pid,pname,pprice) Λ Accessible(pid) Λ

Accessible(pname) Λ Accessible(pprice)

Accessible(pid) Λ Item(itemid,pid) → InferredAccessibleItem(itemid,pid) Λ Accessible(itemid)

Accessible(cid) Λ Bought(cid,itemid) → InferredAccessibleBought(cid,itemid) Λ Accessible(itemid)

Status: Unsuccessful, open

Inputs: cid↦cid0

Implicit information: Bought(cid0, itemid0),

Customer(cid0), CustomerDetails(cid0,cname0,

cphone0), InferredAccessibleBought(cid0, itemid0),

InferredAccessibleCustomer(cid0),

Accessible={cid0, itemid0}

Customer∅Boughtcid

⋈

BoughtcidCustomer∅

⋈ 1

2

ItempidProduct∅

⋈

Product∅Itempid

⋈

3

4

After combining 1 with 3 we can

reuse the implicit information while

combining 1 with 4, 2 with 3 and 2

with 4.

Relations Constraints

Access methods
Query

Accessibility axioms

Q:- ∃ pid, pname,itemid CustomerDetails(cid,cname,cphone), Bought(cid,itemid), Product(pid, pname, pprice),

Item(itemid,pid)

Q*:- CustomerDetails(cid0,cname0, cphone0), Bought(cid0, itemid0), Product(pid0, pname0, pprice0),

Item(itemid0, pid0)

Hidden database: CustomerDetails(cid0,cname0, cphone0), Bought(cid0, itemid0), Product(pid0,

pname0, pprice0), Item(itemid0, pid0), Customer(cid0)

Status: Unsuccessful, closed

Inputs: ∅
Implicit information: Customer(cid0),

CustomerDetails(cid0,cname0, cphone0),

InferredAccessibleCustomer(cid0),

Accessible={cid0}

Status: Unsuccessful, open

Inputs: cid↦cid0

Implicit information: Bought(cid0, itemid0),

InferredAccessibleBought(cid0, itemid0),

Accessible={cid0, itemid0}

Customer∅

Boughtcid

Customer∅Boughtcid

⋈

Benedikt, M., Leblay, J., Cate, B.T. and Tsamoura, E., 2016. Generating Plans from Proofs: The
Interpolation-based Approach to Query Reformulation. Synthesis Lectures on Data Management,
8(1), pp.1-205.

Benedikt, M., Ten Cate, B. and Tsamoura, E., 2016. Generating Plans from Proofs. ACM
Transactions on Database Systems (TODS), 40(4), p.22.

Benedikt, M., Leblay, J. and Tsamoura, E., 2015. Querying with access patterns and integrity
constraints. Proceedings of the VLDB Endowment,8(6), pp.690-701.

Benedikt, M., Leblay, J. and Tsamoura, E., 2014. PDQ: Proof-driven query answering over web-
based data. Proceedings of the VLDB Endowment,7(13), pp.1553-1556.

Benedikt, M., Ten Cate, B. and Tsamoura, E., 2014, June. Generating low-cost plans from proofs.
In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems (pp. 200-211). ACM.

REFERENCES

Synchronization
PDQSynchronizationCallback

Optimization
PDQOptimizationCallback

Add objects
to

Workspace

New
objects

recorded

Lo
gi

cB
lo

x
P

D
Q

Rule
optimization

Ignore

Planning
initiated

No

Plan
search

Cost
estimate

Yes

Planning
complete

Replaces
rule with
rewriting

Problem

Problem

PDQ – LB Optimization Workflow

PDQ

Client

Compiler

Runtime
Compilation Unit

Rewriters

Execution

Graph

Optimizer

Pager

Metadata DirectoryWorkspace

Planner

Cost estimator

Rewriters

Reasoner

S
erv

er

…

…

Workspace

LB Architecture (abstract)
LogicBlox is a relational database geared toward analytics and predictions.

LogicBlox programs are implemented in the proprietary language LogicQL, derived from Datalog.

A PDQ server instance is started upon the creation or opening of an LB workspace.

PDQ is initialized with all relevant information from the workspace such as views and constraints.

PDQ optimizes LB rules, by offering equivalent rewritings with different cost.

During planning PDQ asks LB for its estimation about the cost of a specific subplan.

When a transaction ends successfully, PDQ is updated to account for the objects that have been

created or destroyed.

Optimizable?

