KeywDB: Keyword Driven Mapping Construction

Optique[®] D. Zheleznyakov, E. Kharlamov, I. Horrocks V. Klungre, M. G. Skjæveland, D. Hovland, M. Giese, A. Waaler

University of Oxford University of Oslo

Semantic Access to Databases

Databases

- Optimised for query answering
- Historically evolve in user-unfriendly form
- Statoil
- Exploration & Production Data Store (EPDS)
- Has been developed for 15 years
- 3K tables, 37K columns, 700 GB data

Ontology Based Data Access

- Ontology: conceptual domain model

Connecting Data to Ontologies

Problems

- Connect new DBs to the ontology
- Add new vocabulary to the Ontology

Existing approaches

- Direct mappings: mirror the structure
- May not work in many applications

Project Goals:

- Facilitate discovery of mappings that reflect users' expectations
- Enable discovering of quality mappings in industry: Statoil

Mappings: relate ontological terms to DBs

Keyword Driven Approach: General Idea

User

- Describes: what she expects from the ontology
- Provides: examples of entities of the missing class C
- Example = set of keywords
- Keyword = a characteristics,

or attribute value for entities in C

System

- Returns a ranked list of queries
 - \circ r₁:SQL₁, r₂:SQL₂, ..., r_n:SQL_n
- Each query represents C
- In materialisation of each query SQL_i
 - each tuple corresponds to an entity of C
 - o some user's ex. are "among" the tuples
- The higher the rank, the better the query captures user's expectations

Turn RDB data into a Graph

- Each tuple \rightarrow node
- 2 semantically related tuples \rightarrow edge

Map each example entity E into the graph

- Map each keyword of E map to a node
- Take minimum sub-graphs "covering" E

Compute queries from sub-graphs

- Convert each sub-graph into a query
- Unify obtained queries

Rank queries based on

- Quality of keyword match and distribution
- Size and compactness of sub-graphs

0.8: Q1 = Person(x,y,z), Affiliation(x,u), Organisation(u,w) 0.2: Q2 = Person(x,y,z)

mappingid	Class - Employee												
target	ex:pid a ex:Employee												
source	SELECT pid												
	FROM Person, Organisation, Affiliation												
	WHERE Person.pid = Affiliation.person,												
	Organisation.pid = Affiliation.org												
mappingid	Property - hasName												
target	ex:pid ex:hasName 'fname'												
source	SELECT Person.pid, Person.fname												
	FROM Person, Organisation, Affiliation												

Research Challenges

Graphs

- Data graph: too large good to define semantics
- Schema graph: does not help much (no keyword info)
- Keyword driven schema graph: good balance, practical

KeywDB System

Challenges

- Efficiency
 - candidate sub-graph selection
 - indexes for keyword match, node reachability
- Effectiveness
 - target queries are in top-k
 - small number of "simple" keywords is enough
- Top-K queries
 - top-k without exact ranking
 - approximation of ranking

	Check Query Save Mappings Save Views	Close Accept											
		~ < _			-				-				;
	FROM person AS person0, affiliation AS affiliation1, company AS company2, affiliation AS affiliation3,	2	Bob	Lee	2	а	а	Hilton	1	а	1	Bob	Hilton
	company2.cname, person4.fname, person4.lname	2	Bob	Lee	2	а	а	Hilton	2	а	2	Bob	Lee
Q3:	SELECT DISTINCT person0.fname, person0.lname,		Bob	Hilton	1	а	а	Hilton	3	а	3	John	Wu
капк	:: 0.452 Covered objects: 0, 2	3	John	Wu	3	а	а	Hilton	3	а	3	John	Wu
D 1			John	vvu								DOD	Піцоп

Main features

- Allows for multiple examples, each with several keywords
- Computation of
 - Schema graph, keywords driven schema graph
- Inverted index for keywords
- Reachability index for keywords driven schema graph
- Support for mapping configuration via attribute selection

Flexible configuration

Top-k, maximal query size, query similarity