
KeywDB: Keyword Driven Mapping Construction
D.	 Zheleznyakov,	 E.	 Kharlamov,	 I.	 Horrocks	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 University	 of	 Oxford	
V.	 Klungre,	 M.	 G.	 Skjæveland,	 D.	 Hovland,	 M.	 Giese,	 	 A.	 Waaler	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 University	 of	 Oslo	

Semantic Access to Databases

Keyword Driven Approach: General Idea

Connecting Data to Ontologies

Research Challenges KeywDB System

Databases
§  Optimised for query answering
§  Historically evolve in user-unfriendly form
§  Statoil
o  Exploration & Production Data Store (EPDS)
o  Has been developed for 15 years
o  3K tables, 37K columns, 700 GB data

Ontology Based Data Access
§  Ontology: conceptual domain model
§  Mappings: relate ontological terms to DBs

Problems
§  Connect new DBs to the ontology
§  Add new vocabulary to the Ontology

Existing approaches
§  Direct mappings: mirror the structure
§  May not work in many applications

Graphs
§  Data graph: too large – good to define semantics
§  Schema graph: does not help much (no keyword info)
§  Keyword driven schema graph: good balance, practical

Challenges
§  Efficiency
o  candidate sub-graph selection
o  indexes for keyword match, node reachability

§  Effectiveness
o  target queries are in top-k
o  small number of “simple” keywords is enough

§  Top-K queries
o  top-k without exact ranking
o  approximation of ranking

Turn RDB data into a Graph
§  Each tuple à node
§  2 semantically related tuples à edge

Map each example entity E into the graph
§  Map each keyword of E map to a node
§  Take minimum sub-graphs “covering” E

Compute queries from sub-graphs
§  Convert each sub-graph into a query
§  Unify obtained queries

Rank queries based on
§  Quality of keyword match and distribution
§  Size and compactness of sub-graphs

Main features
§  Allows for multiple examples, each with several keywords
§  Computation of
o  Schema graph, keywords driven schema graph

§  Inverted index for keywords
§  Reachability index for keywords driven schema graph
§  Support for mapping configuration via attribute selection

Flexible configuration
§  Top-k, maximal query size, query similarity

City

Place
Sub-class Of

Country

Sub-class Of

Ocean
Sub-class Of

Disjoint with

mappings!

ontology!

query!

Optique Deliverable D3.3 Techniques for Query-Driven Ontology Construction

Person

pid fname lname
1 Bob Hilton
2 Bob Lee
3 John Wu

Organisation

oid cname
↵ Hilton
� UOXF

Affiliation

person org
1 �
2 ↵
3 ↵
1 ↵

Primary keys: (Person.pid), (organisation.oid), and (Affiliation.person, Affiliation.organisation)
Foreign keys: (Affiliation.person→ Person.pid), and (Affiliation.org→ organisation.oid)

Figure 2.1: Personnel database

Mappings. Several mappings for Employee are plausible. For instance, one can ‘populate’ the class
Employee with the projection on the first attribute of Affiliation:

Mapping m1
mappingid Class - Employee

target ex:person a ex:Employee

source SELECT person

FROM Affiliation

Another mapping ‘populates’ Employee with persons (from the table Person) who are mentioned together
with their organisations in the Affiliation table:

Mapping m2
mappingid Class - Employee

target ex:pid a ex:Employee

source SELECT pid

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Organisation.pid = Affiliation.org

Mappings m1 and m2 can be used for answering Q and they give the same result (assuming the NOT
NULL constraint on both person and org attributes of Affiliation).

User Expectations for Mappings. The mapping m2 better confirms our expectations than m1. The
conceptual reason is that the SQL view of m1 is over a many-to-many table Affiliation where each tuple
does not represent an entity: but rather a cross reference between entities from two tables Person and
Organisation. At the same time, the SQL view of m2 is over the table Person where tuples are entities,
i.e., people, and the view filters out those who are not affiliated with any organisations. In practical terms,
what we expect from a good mapping m is people like ‘Bob Hilton’ or ‘John Wu’ that are hired by some
organisations like ‘UOXF’ or ‘Hilton’. In order for m to confirm this expectation we should be able to verify
whether that m indeed ‘talks’ about Bob from UOXF and John from Hilton. One way to do this verification
is to check whether the view defined by m has a tuple mentioning Bob from UOXF and a tuple mentioning
John from Hilton. Clearly, m1 does not have such tuples, while m2 has and thus m2 is better from the point
of view of our expectations.

Necessity of Data Attributes. In order to get a better understanding of why together with Employee we
should also introduce and map to the data D some data properties Ris relevant to it, recall a general form
of mappings for classes:

Class(fo(�x))� SQL(�x, �y),
7

Optique Deliverable D3.3 Techniques for Query-Driven Ontology Construction

where SQL(�x, �y) is a SQL query over the data D with output variables �x and existentially quantified variables�y (that are projected out), and fo a function that turnes tuples �t returned by SQL(�x, �y) (i.e., �t is a tuple of
constants from D that �x is bound to) into entity identifiers fo(�t). In our example fo for both mis adds to
the answers a prefix ‘ex:’. Evaluation of Q with m2 (and m1) gives three entity identifiers as answers: ex:1,
ex:2, and ex:3. It is natural to assume that users cannot associate entity ids computed with the function fo
to the actual real world entities. Indeed, the entity identifier ex:1 computed by fo is composed from ‘ex:’
and the value 1 of the attribute pid from the table Person. Note that pid is the primary key of Person,
and thus its values can be auto-incrementally generated by the DBMS that stores D. In this case 1 does not
have any specific meaning: it is just a number generated by the RDMBS and, therefore, there is no natural
relation between the string ex:1 and the real person Bob Hilton represented with ex:1. Thus, the class
Employee naturally requires data properties such as hasName and hasA�liation, so that the user can query
for some human understandable information about entity identifiers, e.g., to see that hasName(ex:1, ‘Bob′),
hasA�liation(ex:1, ‘Hilton′). In particular, these attributes would allow the users to verify whether the
mapping that populates Employee confirms their expectations in the sense described above. To sum up,
when adding a class to an ontology, it is important from a practical point of view to add to the ontology
data properties for objects in this class.

Data Attributes. The three natural attributes for Employee are hasName, hasLastName, and hasA�liation
and M should be extended to accomodate for these attributes. Given a mapping m for the class Employee,
a way to introduce these three mappings is to apply direct mapping techniques over the view defined by m.
For instance, the view V2 defined by m2 is a join of three tables Person, Organisation, and Affiliation:

The view V2
SELECT *

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Affiliation.pid = Affiliation.org

and the direct mapping for hasName can essentially be the projection of V2 on the attribute fname, for
hasLastName—the projection of V2 on lname, and for Affiliation—on cname. These mappings can be
expressed as follows:

Mapping m3
mappingid Property - hasName

target ex:pid ex:hasName ‘fname’

source SELECT Person.pid, Person.fname

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Affiliation.pid = Affiliation.org

Mapping m4
mappingid Property - hasLastName

target ex:pid ex:hasLastName ‘lname’

source SELECT Person.pid, Affiliation.cname

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Affiliation.pid = Affiliation.org

Mapping m5
mappingid Property - hasAffiliation

target ex:pid ex:hasAffiliation ‘cname’

source SELECT Person.pid, Affiliation.cname

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Affiliation.pid = Affiliation.org

8

Optique Deliverable D3.3 Techniques for Query-Driven Ontology Construction

1 2

3

α

β

1α

1β

2α

3α

o1 :
1

o2 : o3 : o4 :
1

α

1α

2

α

2α

1 2

α

1α 2α

Figure 2.2: Left: graph constructed from the example database from Figure 2.1. Right: subgraphs extracted
by matching user’s example e1

• The final step is to rank the queries q′ based on the quality of keyword match and characteristics of
the graphs G′.

The intuition behind this procedure is the following. Each set of keywords, e.g., e = {Bob,Hilton}
describes an object oe of the class C, e.g., Bob who works in Hilton and belongs to the class Employee. Our
assumption is that

[Objects in RDBs] an object in a database is a tuple (possibly scattered across several tables).

In D the object oe might be ‘stored’ in one table, e.g., as a tuple in a table Person, or scattered across
different tables: tuples from several tables should be joined in order to construct a tuple, e.g., the name
‘Bob’ is stored in the table Person, while his company in the table Organisation. By matching keywords
to the graph G we determine the tuples of D across which oe can be scattered, and the minimal subgraph G′
that we extract shows how to join these tuples into one te that represents oe. The query q′ that we construct
based on G′ is such that its evaluation over D returns te and other tuples that represent objects similar to
the one described in e.

We now illustrate the approach on our running example.

2.5 Turning Keywords Into Queries: Illustration on Running Example

The graph G corresponding to the database D in Figure 2.1 is in the Figure 2.2. In the figure each node
represents a tuple in some table and we label each node with the primary key of the corresponding tuple,
e.g., the node labeled with 1 represents the first tuple from the table “Person”.

Assume that the user provides three examples E = {e1, e2, e3} of objects from the class Employee:

e1 = {Bob,Hilton}, e2 = {Wu}, e3 = {John,Hilton}. (2.1)

The first example e1 can be matched into G and there are four such mappings: “Bob” can be matched
into the nodes (1) and (2)—since Bob occurs in the tuples corresponding to these nodes—and “Hilton” can
be matched into the nodes (1) and (↵). Thus, there are four (candidate) objects of the class Employee that
e1 describes, and each is represented by the way that the keywords are matched into G:

o1 ∶ Bob� (1),Hilton� (1) o2 ∶ Bob� (1),Hilton� (↵)
o3 ∶ Bob� (2),Hilton� (↵) o4 ∶ Bob� (2),Hilton� (1).

The minimum subgraphs of G corresponding to these matches are presented in Figure 2.2, right. Based
on these subgraphs we can compute queries that ‘extract’ the corresponding subgraph.

• q1(fname, lname) = ∃id.Person(id, fname, lname)
• q2(fname, cname) = ∃pid, lname, cid.

Person(pid, fname, lname) ∧A�liation(pid, cid) ∧Company(cid, cname)
10

E1:$$Bob$!$1$
$$$$$$$Hilton$!$1$

E1:$$Bob$!$1$
$$$$$$$Hilton$!$a$

E1:$Hilton!$1$
$$$$$$$Bob$!$2$

Data$Graph:$

E1:$$Bob$!$2$
$$$$$$$Hilton$!$a$

o1 :
1

o2 :
1

α

1α

o3 :
o4 :

2

α

2α

1 2

α

1α 2α

Sub-graphsforkeywords:$

0.8: Q1 = Person(x,y,z), Affiliation(x,u), Organisation(u,w)
0.2: Q2 = Person(x,y,z)

Data Graph Schema Graph Keyword Driven
Schema Graph

Per

Org

Aff

Per

Org

Aff

Per

Per{Bob}

{Hilton}

Per{Bob, Hilton}

Org {Hilton}

1 2

3

α

β

1α

1β

2α

3α

Project Goals:
•  Facilitate discovery of mappings that reflect users’ expectations
•  Enable discovering of quality mappings in industry: Statoil

Employee is …
E1 = {Bob, Hilton}
E2 = {Wu}
E3 = {John, Hilton}

City

Place
Sub-class Of

Country

Sub-class Of

Ocean
Sub-class Of

Disjoint with

mappings!

ontology!

Q(x) = Employee(x)

Optique Deliverable D3.3 Techniques for Query-Driven Ontology Construction

Person

pid fname lname
1 Bob Hilton
2 Bob Lee
3 John Wu

Affiliation

person org
1 �
2 ↵
3 ↵
1 ↵

Organisation

oid cname
↵ Hilton
� UOXF

Primary keys: (Person.pid), (organisation.oid), and (Affiliation.person, Affiliation.organisation)
Foreign keys: (Affiliation.person→ Person.pid), and (Affiliation.org→ organisation.oid)

Figure 2.1: Personnel database

Mappings. Several mappings for Employee are plausible. For instance, one can ‘populate’ the class
Employee with the projection on the first attribute of Affiliation:

Mapping m1
mappingid Class - Employee

target ex:person a ex:Employee

source SELECT person

FROM Affiliation

Another mapping ‘populates’ Employee with persons (from the table Person) who are mentioned together
with their organisations in the Affiliation table:

Mapping m2
mappingid Class - Employee

target ex:pid a ex:Employee

source SELECT pid

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Organisation.pid = Affiliation.org

Mappings m1 and m2 can be used for answering Q and they give the same result (assuming the NOT
NULL constraint on both person and org attributes of Affiliation).

User Expectations for Mappings. The mapping m2 better confirms our expectations than m1. The
conceptual reason is that the SQL view of m1 is over a many-to-many table Affiliation where each tuple
does not represent an entity: but rather a cross reference between entities from two tables Person and
Organisation. At the same time, the SQL view of m2 is over the table Person where tuples are entities,
i.e., people, and the view filters out those who are not affiliated with any organisations. In practical terms,
what we expect from a good mapping m is people like ‘Bob Hilton’ or ‘John Wu’ that are hired by some
organisations like ‘UOXF’ or ‘Hilton’. In order for m to confirm this expectation we should be able to verify
whether that m indeed ‘talks’ about Bob from UOXF and John from Hilton. One way to do this verification
is to check whether the view defined by m has a tuple mentioning Bob from UOXF and a tuple mentioning
John from Hilton. Clearly, m1 does not have such tuples, while m2 has and thus m2 is better from the point
of view of our expectations.

Necessity of Data Attributes. In order to get a better understanding of why together with Employee we
should also introduce and map to the data D some data properties Ris relevant to it, recall a general form
of mappings for classes:

Class(fo(�x))� SQL(�x, �y),
7

Optique Deliverable D3.3 Techniques for Query-Driven Ontology Construction

Person

pid fname lname
1 Bob Hilton
2 Bob Lee
3 John Wu

Affiliation

person org
1 �
2 ↵
3 ↵
1 ↵

Organisation

oid cname
↵ Hilton
� UOXF

Primary keys: (Person.pid), (organisation.oid), and (Affiliation.person, Affiliation.organisation)
Foreign keys: (Affiliation.person→ Person.pid), and (Affiliation.org→ organisation.oid)

Figure 2.1: Personnel database

Mappings. Several mappings for Employee are plausible. For instance, one can ‘populate’ the class
Employee with the projection on the first attribute of Affiliation:

Mapping m1
mappingid Class - Employee

target ex:person a ex:Employee

source SELECT person

FROM Affiliation

Another mapping ‘populates’ Employee with persons (from the table Person) who are mentioned together
with their organisations in the Affiliation table:

Mapping m2
mappingid Class - Employee

target ex:pid a ex:Employee

source SELECT pid

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Organisation.pid = Affiliation.org

Mappings m1 and m2 can be used for answering Q and they give the same result (assuming the NOT
NULL constraint on both person and org attributes of Affiliation).

User Expectations for Mappings. The mapping m2 better confirms our expectations than m1. The
conceptual reason is that the SQL view of m1 is over a many-to-many table Affiliation where each tuple
does not represent an entity: but rather a cross reference between entities from two tables Person and
Organisation. At the same time, the SQL view of m2 is over the table Person where tuples are entities,
i.e., people, and the view filters out those who are not affiliated with any organisations. In practical terms,
what we expect from a good mapping m is people like ‘Bob Hilton’ or ‘John Wu’ that are hired by some
organisations like ‘UOXF’ or ‘Hilton’. In order for m to confirm this expectation we should be able to verify
whether that m indeed ‘talks’ about Bob from UOXF and John from Hilton. One way to do this verification
is to check whether the view defined by m has a tuple mentioning Bob from UOXF and a tuple mentioning
John from Hilton. Clearly, m1 does not have such tuples, while m2 has and thus m2 is better from the point
of view of our expectations.

Necessity of Data Attributes. In order to get a better understanding of why together with Employee we
should also introduce and map to the data D some data properties Ris relevant to it, recall a general form
of mappings for classes:

Class(fo(�x))� SQL(�x, �y),
7

Optique Deliverable D3.3 Techniques for Query-Driven Ontology Construction

Person

pid fname lname
1 Bob Hilton
2 Bob Lee
3 John Wu

Affiliation

person org
1 �
2 ↵
3 ↵
1 ↵

Organisation

oid cname
↵ Hilton
� UOXF

Primary keys: (Person.pid), (organisation.oid), and (Affiliation.person, Affiliation.organisation)
Foreign keys: (Affiliation.person→ Person.pid), and (Affiliation.org→ organisation.oid)

Figure 2.1: Personnel database

Mappings. Several mappings for Employee are plausible. For instance, one can ‘populate’ the class
Employee with the projection on the first attribute of Affiliation:

Mapping m1
mappingid Class - Employee

target ex:person a ex:Employee

source SELECT person

FROM Affiliation

Another mapping ‘populates’ Employee with persons (from the table Person) who are mentioned together
with their organisations in the Affiliation table:

Mapping m2
mappingid Class - Employee

target ex:pid a ex:Employee

source SELECT pid

FROM Person, Organisation, Affiliation

WHERE Person.pid = Affiliation.person,

Organisation.pid = Affiliation.org

Mappings m1 and m2 can be used for answering Q and they give the same result (assuming the NOT
NULL constraint on both person and org attributes of Affiliation).

User Expectations for Mappings. The mapping m2 better confirms our expectations than m1. The
conceptual reason is that the SQL view of m1 is over a many-to-many table Affiliation where each tuple
does not represent an entity: but rather a cross reference between entities from two tables Person and
Organisation. At the same time, the SQL view of m2 is over the table Person where tuples are entities,
i.e., people, and the view filters out those who are not affiliated with any organisations. In practical terms,
what we expect from a good mapping m is people like ‘Bob Hilton’ or ‘John Wu’ that are hired by some
organisations like ‘UOXF’ or ‘Hilton’. In order for m to confirm this expectation we should be able to verify
whether that m indeed ‘talks’ about Bob from UOXF and John from Hilton. One way to do this verification
is to check whether the view defined by m has a tuple mentioning Bob from UOXF and a tuple mentioning
John from Hilton. Clearly, m1 does not have such tuples, while m2 has and thus m2 is better from the point
of view of our expectations.

Necessity of Data Attributes. In order to get a better understanding of why together with Employee we
should also introduce and map to the data D some data properties Ris relevant to it, recall a general form
of mappings for classes:

Class(fo(�x))� SQL(�x, �y),
7

query!

User
§  Describes: what she expects from the ontology
§  Provides: examples of entities of the missing class C
§  Example = set of keywords
§  Keyword = a characteristics,  

 or attribute value for entities in C

System
§  Returns a ranked list of queries

o  r1:SQL1, r2:SQL2, …, rn:SQLn
§  Each query represents C
§  In materialisation of each query SQLi

o  each tuple corresponds to an entity of C
o  some user’s ex. are “among” the tuples

§  The higher the rank, the better  
the query captures user’s expectations

